• Title/Summary/Keyword: p-version nonlinear finite element model

Search Result 10, Processing Time 0.027 seconds

Structural Behavior Analysis of Two-way RC Slabs by p-Version Nonlinear Finite Element Model (p-Version 비선형 유한요소모텔에 의한 2방향 철근 콘크리트 슬래브의 역학적 거동해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.15-24
    • /
    • 2005
  • This study is focused on modeling to predict the behavior of two-way RC slabs. A new finite element model will be presented to analyze the nonlinear behavior of RC slabs. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on the Kuper's yield criterion, hardening rule, and crushing condition. The validity of the proposed p-version nonlinear RC finite element model is demonstrated through the load-deflection curves and the ultimate loads. It is shown that the proposed model is able to adequately predict the deflection and ultimate load of two-way slabs with respect to steel arrangements and steel ratios.

Structural Behavior Analysis of Skew RC Slabs by p-Version Nonlinear Finite Element Model (p-Version 비선형 유한요소 모델에 의한 철근 콘크리트 경사 슬래브의 역학적 거동 해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.17-26
    • /
    • 2005
  • The objectives of this study are to determine the behavior of simply supported skew RC slabs subjected to a point load. The p-version nonlinear skew RC FE model has been used. Integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. In the nonlinear formulation of this model, the material model is based on the Kupfer's yield criterion, hardening rule, and crushing condition and layered model is used through the thickness. The cracking behavior is modeled by a smeared crack model and the fixed crack approach is adopted as the crack model. It is shown that the proposed model is able to adequately predict the deflection and ultimate load of nonlinear skew RC slabs with respect to steel arrangements and steel ratios.

Ultimate Load of RC Structures Bonded with the Soffit Plate by p-Version Nonlinear Analysis (p-Version 비선형 해석에 의한 팻취보강된 RC구조물의 극한강도 산정)

  • 안재석;박진환;홍종현;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.365-372
    • /
    • 2004
  • A new finite element model will be presented to analyze the nonlinear behavior of not only RC beams and slabs, but also RC beams strengthened by a patch repair. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on hardening rule, crushing condition, plate-end debonding strength model and so on. The Gauss-Lobatto numerical quadrature is applied to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several numerical examples for the load-deflection curves, the ultimate loads, and the failure modes of reinforced connote slabs and RC beams bonded with steel plates or FRP plates compared with available experimental and numerical results.

  • PDF

p-Version Nonlinear Finite Element Analysis of RC Slabs Strengthened with Externally Bonded CFRP Sheets (탄소섬유보강 플라스틱시트로 외부보강된 RC 슬래브의 p-Version 비선형 유한요소 해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.61-68
    • /
    • 2006
  • The p-version nonlinear finite element model has been developed to analyze the nonlinear behavior of simply supported RC slabs strengthened with carbon fiber reinforced plastic sheets. The shape function is adopted with integral of Legendre polynomials. The compression model of concrete is based on the Kupfer's yield criterion, hardening rule, and crushing condition. The cracking behavior is modeled by a smeared crack model. In this study, the fixed crack approach is adopted as being geometrically fixed in direction once generated. Each steel layer has a uniaxial behavior resisting only the axial force in the bar direction. Identical behavior is assumed fur tension and compression of steel according to the elastic modulus. The carbon fiber reinforced plastic sheets are considered as reinforced layers of equivalent thickness with uniaxial strength and rigidity properties in the present model. It is shown that the proposed model is able to adequately predicte the displacement and ultimate load of nonlinear simply supported RC slabs by a patch with respect to reinforcement ratio, thickness and angles of CFRP sheets.

Numerical Prediction of Ultimate Strength of RC Beams and Slabs with a Patch by p-Version Nonlinear Finite Element Modeling and Experimental Verification (p-Version 비선형 유한요소모델링과 실험적 검증에 의한 팻취 보강된 RC보와 슬래브의 극한강도 산정)

  • Ahn Jae-Seok;Park Jin-Hwan;Woo Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.375-387
    • /
    • 2004
  • A new finite element model will be presented to analyze the nonlinear behavior of RC beams and slabs strengthened by a patch repair. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on hardening rule, crushing condition, plate-end debonding strength model and so on. The Gauss-Lobatto numerical quadrature is applied to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version nonlinear finite element model is demonstrated through the load-deflection curves, the ultimate loads, and the failure modes of RC beams or slabs bonded with steel plates or FRP plates compared with available result of experiment and other numerical methods.

p-Version Finite Element Analysis of Anisotropic Laminated Plates considering Material-Geometric Nonlinearities (재료-기하비선형을 고려한 이방성 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.319-326
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed for the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted for in the sense of von Karman hypothesis. The material model Is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized for anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The Integrals of Legendre Polynomials we used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several comparative points of view in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic zone

  • PDF

Ρ-Version Finite Element Analysis for Material Nonlinearity (재료적 비선형을 고려한 Ρ-Version 유한요소해석)

  • 정우성;홍종현;우광성;신영식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.71-78
    • /
    • 1997
  • The high precision analysis by the p-version of the finite element method are fairly well established as highly efficient method for linear elastic problems, especially in the presence of stress singularity. It has been noted that the merits of p-version are accuracy, modeling simplicity, robustness, and savings in user's and CPU time. However, little has been done to exploit their benefits in elasto-plastic analysis. In this paper, the p-version finite element model is proposed for the materially nonlinear analysis that is based on the incremental theory of plasticity, the associated flow rule, and von-Mises yield criteria. To obtain the solution of nonlinear equation, the Newton-Raphson method and initial stiffness method, etc are used. Several numerical examples are tested with the help of the square plates with cutout, the thick-walled cylinder under internal pressure, and the center cracked plate under tensile loading. Those results are compared with the there cal solutions and the numerical solutions of ADINA software.

  • PDF

p-Version Elasto-Plastic Finite Element Analysis by Incremental Theory of Plasticity (증분소성이론에 의한 p-Version 탄소성 유한요소해석)

  • 정우성;홍종현;우광성
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.217-228
    • /
    • 1997
  • The high precision analysis by the p-version of the finite element method are fairly well established as highly efficient method for linear elastic problems, especially in the presence of stress singularity. It has been noted that the merits of the p-version are accuracy, modeling simplicity, robustness, and savings in user's and CPU time. However, little has been done to exploit their benefits in elasto-plastic analysis. In this paper, the p-version finite element model is proposed for the materially nonlinear analysis that is based on the incremental theory of plasticity using the constitutive equation for work-hardening materials, and the associated flow rule. To obtain the solution of nonlinear equation, the Newton-Raphson method and initial stiffness method, etc are used. Several numerical examples are tested with the help of the square plates with cutout, the thick-walled cylinder under internal pressure, and the circular plate with uniformly distributed load. Those results are compared with the theoretical solutions and the numerical solutions of ADINA

  • PDF

p-Version Finite Element Analysis of Composite Laminated Plates with Geometric and Material Nonlinearities (기하 및 재료비선형을 갖는 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.491-499
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed tot the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted tot in the sense of yon Karman hypothesis. The material model is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized lot anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed P-version finite element model is demonstrated through several comparative points of iew in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic tone.

J-integral and fatigue life computations in the incremental plasticity analysis of large scale yielding by p-version of F.E.M.

  • Woo, Kwang S.;Hong, Chong H.;Basu, Prodyot K.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.51-68
    • /
    • 2004
  • Since the linear elastic fracture analysis has been proved to be insufficient in predicting the failure of strain hardening materials, a number of fracture concepts have been studied which remain applicable in the presence of plasticity near a crack tip. This work thereby presents a new finite element model to predict the elastic-plastic crack-tip field and fatigue life of center-cracked panels(CCP) with ductile fracture under large-scale yielding conditions. Also, this study has been carried out to investigate the path-dependence of J-integral within the plastic zone for elastic-perfectly plastic, bilinear elastic-plastic, and nonlinear elastic-plastic materials. Based on the incremental theory of plasticity, the p-version finite element is employed to account for the accurate values of J-integral, the most dominant fracture parameter, and the shape of plastic zone near a crack tip by using the J-integral method. To predict the fatigue life, the conventional Paris law has been modified by substituting the range of J-value denoted by ${\Delta}J$ for ${\Delta}K$. The experimental fatigue test is conducted with five CCP specimens to validate the accuracy of the proposed model. It is noted that the relationship between the crack length a and ${\Delta}K$ in LEFM analysis shows a strong linearity, on the other hand, the nonlinear relationship between a and ${\Delta}J$ is detected in EPFM analysis. Therefore, this trend will be depended especially in the case of large scale yielding. The numerical results by the proposed model are compared with the theoretical solutions in literatures, experimental results, and the numerical solutions by the conventional h-version of the finite element method.