• Title/Summary/Keyword: p-valent

Search Result 119, Processing Time 0.033 seconds

ON CLASSES OF CERTAIN ANALYTIC FUNCTIONS DEFINED BY MULTIPLIER TRANSFORMATIONS

  • Lee, Sang-Ho;Cho, Nak-Eun
    • East Asian mathematical journal
    • /
    • v.16 no.2
    • /
    • pp.225-231
    • /
    • 2000
  • The purpose of the present paper is to introduce a new class $\mathcal{P}_{n,p}(\alpha)$ of analytic functions defined by a multiplier transformation and to investigate some properties for the class $\mathcal{P}_{n,p}(\alpha)$.Furthermore, we consider an integral of functions belonging to the class $\mathcal{P}_{n,p}(\alpha)$.

  • PDF

The Evolving Epidemiology of Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Strains Isolated from Adults in Crete, Greece, 2009-2016

  • Maraki, Sofia;Mavromanolaki, Viktoria Eirini;Stafylaki, Dimitra;Hamilos, George;Samonis, George
    • Infection and chemotherapy
    • /
    • v.50 no.4
    • /
    • pp.328-339
    • /
    • 2018
  • Background: Pneumococcal disease is a major cause of morbidity and mortality worldwide, especially in patients with comorbidities and advanced age. This study evaluated trends in epidemiology of adult pneumococcal disease in Crete, Greece, by identifying serotype distribution and antimicrobial resistance of consecutive Streptococcus pneumoniae strains isolated from adults during an 8-year time period (2009-2016) and the indirect effect of the infant pneumococcal higher-valent conjugate vaccines 10-valent pneumococcal conjugate vaccine (PCV10) and 13-valent pneumococcal conjugate vaccine (PCV13). Materials and Methods: Antimicrobial susceptibility was performed by E-test and serotyping by Quellung reaction. Multidrug resistance (MDR) was defined as non-susceptibility to penicillin (PNSP) combined with resistance to ${\geq}2$ non-${\beta}$-lactam antimicrobials. Results: A total of 135 S. pneumoniae strains were isolated from adults during the study period. Twenty-one serotypes were identified with 17F, 15A, 3, 19A, and 11A, being the most common. The coverage rates of PCV10, and PCV13 were 17.8% and 37.8%, respectively. PCV13 serotypes decreased significantly from 68.4% in 2009 to 8.3% in 2016 (P = 0.002). The most important emerging non-PCV13 serotypes were 17F, 15A, and 11A, with 15A being strongly associated with antimicrobial resistance and MDR. Among all study isolates, penicillin-resistant and MDR strains represented 7.4% and 14.1%, respectively. Predominant PNSP serotypes were 19A (21.7%), 11A (17.4%), and 15A (17.4%). Erythromycin, clindamycin, tetracycline, trimethoprim-sulfamethoxazole, and levofloxacin resistant rates were 30.4%, 15.6%, 16.3%, 16.3%, and 1.5%, respectively. Conclusion: Although pneumococcal disease continues to be a health burden in adults in Crete, our study reveals a herd protection effect of the infant pneumococcal higher-valent conjugate vaccination. Surveillance of changes in serotype distribution and antimicrobial resistance among pneumococcal isolates are necessary to guide optimal prevention and treatment strategies.

SOME MAJORIZATION PROBLEMS ASSOCIATED WITH p-VALENTLY STARLIKE AND CONVEX FUNCTIONS OF COMPLEX ORDER

  • Altintas, Osman;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.175-183
    • /
    • 2001
  • The main object of this paper is to investigate several majorization problems involving two subclasses $S_{p,q}(\gamma)$ and $C_{p,q}(\gamma)$ of p-valently starlike and p-valently convex functions of complex order ${\gamma}{\neq}0$ in the open unit disk $\mathbb{u}$. Relevant connections of the results presented here with those given by earlier workers on the subject are also indicated.

  • PDF

Mechanism and Adsorption Capacity of Arsenic in Water by Zero-Valent Iron (수용액 중 영가 철의 비소흡착 및 반응기작 구명)

  • Yoo, Kyung-Yoal;Ok, Yong-Sik;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • Objective of this research was to evaluate optimal conditions of arsenic adsorption in water by zero-valent iron (ZVI). Batch experiment showed that adsorption of arsenic by ZVI followed a Langmuir isotherm model. The masses of As(V) adsorbed onto ZVI were increased as decreasing pH of the reacting solution (pH 3: 2.05, pH 5: 1.82, pH 7: 1.24, pH 9: 1.03 mg As/g $Fe^0$) and as increasing the temperature ($15^{\circ}C$ : 1.59, $25^{\circ}C$ : 1.81, 35 : $1.93^{\circ}C$ mg As/g $Fe^0$). The SEM and EDS (energy dispersive X-ray spectrometer) analysis of morphology and structure of ZVI before and after reacting with arsenic in water revealed that a relatively smooth and large surface of ZVI was transformed into a coarse and small surface particle after the reaction. The EDS spectra on the chemical composition of ZVI demonstrated that arsenic was incorporated into ZVI by adsorption mechanism. The XRD analysis also identified that the only peak for $Fe^0$ in the ZVI before the reaction and confirmed that $Fe^0$ was transformed into $Fe_2O_3$ and FeOOH, and As into $FeAsO_4{\cdot}2H_2O$.

Recovery of Ammonium Salt from Nitrate-Containing Water by Iron Nanoparticles and Membrane Contactor

  • Hwang, Yu-Hoon;Kim, Do-Gun;Ahn, Yong-Tae;Moon, Chung-Man;Shin, Hang-Sik
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.111-116
    • /
    • 2012
  • This study investigates the complete removal of nitrate and the recovery of valuable ammonium salt by the combination of nanoscale zero-valent iron (NZVI) and a membrane contactor system. The NZVI used for the experiments was prepared by chemical reduction without a stabilizing agent. The main end-product of nitrate reduction by NZVI was ammonia, and the solution pH was stably maintained around 10.5. Effective removal of ammonia was possible with the polytetrafluoroethylene membrane contactor system in all tested conditions. Among the various operation parameters including influent pH, concentration, temperature, and contact time, contact time and solution pH showed significant effects on the ammonia removal mechanism. Also, the osmotic distillation phenomena that deteriorate the mass transfer efficiency could be minimized by pre-heating the influent wastewater. The ammonia removal rate could be maximized by optimizing operation conditions and changing the membrane configuration. The combination of NZVI and the membrane contactor system could be a solution for nitrate removal and the recovery of valuable products.

Evaluation of Nanoscale Zero-valent Iron for Reductive Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX): Batch and Column Scale Studies (Hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)의 환원적 분해를 위한나노영가철의 성능평가: 회분식 및 칼럼 실험)

  • Lee, Chung-Seop;Oh, Da-Som;Cho, Sung-Heui;Lee, Jin-Wook;Chang, Yoon-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.117-126
    • /
    • 2015
  • Reductive degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by nanoscale zero-valent iron (nZVI) was investigated to evaluate the feasibility of using it for in-situ groundwater remediation. Batch experiments were conducted to quantify the kinetics and efficiency of RDX removal by nZVI, and to determine the effects of pH, dissolved oxygen (DO), and ionic strength on this process. Experimental results showed that the reduction of RDX by nZVI followed pseudo-first order kinetics with the observed rate constant (kobs) in the range of 0.0056-0.0192 min−1. Column tests were conducted to quantify the removal of RDX by nZVI under real groundwater conditions and evaluate the potential efficacy of nZVI for this purpose in real conditions. In column experiment, RDX removal capacity of nZVI was determined to be 82,500 mg/kg nZVI. pH, oxidation-reduction potential (ORP), and DO concentration varied significantly during the column experiments; the occurrence of these changes suggests that monitoring these quantities may be useful in evaluation of the reactivity of nZVI, because the most critical mechanisms for RDX removal are based on the chemical reduction reactions. These results revealed that nZVI can significantly degrade RDX and that use of nZVI could be an effective method for in-situ remediation of RDX-contaminated groundwater.

Applicability Assessment of Acid Treated Red Mud as Adsorbent Material for Removal of Six-valent Chromium from Seawater (해수에서 6가 크롬 제거를 위한 흡착제로서의 산처리 적니 적용성 검토)

  • Kang, Ku;Um, Byung-Hwan;Kim, Young-Kee;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.5
    • /
    • pp.17-23
    • /
    • 2013
  • Six-valent chromium ($Cr^{6+}$) is a highly toxic pollutant, supplied in a variety of industrial activities such as leather tanning, cooling tower blowdown, and plating. Herein, we investigated the removal of $Cr^{6+}$ from aqueous phase using low-cost adsorbents. Steel slag, montmorillonite, illite, kaolinite, red mud, and acid treated red mud with 0.5, 1.0, and 2.0 M HCl were used as adsorbent for the removal of $Cr^{6+}$ and the results showed that acid treated red mud with 2.0 M HCl (ATRM-2.0 M) had higher adsorption capacity of $Cr^{6+}$ than other adsorbents used. Accordingly, $Cr^{6+}$ removal by ATRM-2.0 M were studied in a batch system with respect to changes in initial concentration of $Cr^{6+}$, initial solution pH, adsorbent dose, adsorbent mixture, and seawater. Equilibrium sorption data were described well by Freundlich isotherm model. The influence of initial solution pH on $Cr^{6+}$ adsorption was insignificant. The use of the ATRM-2.0 M alone was more effective than mixing it with other adsorbents including red mud, zeolite, oyster shell, lime stone, and montmorillonite for the removal of $Cr^{6+}$. The $Cr^{6+}$ removal of the ATRM-2.0 M was slightly less in seawater than deionized water, resulting from the presence of anions in seawater competing for the favorable adsorption site on the surface of ATRM-2.0 M. It was concluded that the ATRM-2.0 M can be used as a potential adsorbent for the removal of $Cr^{6+}$ from the aqueous solutions.

Microbial Reduction of Iron(III) Oxides: Implication for Permeable Reactive Barriers. (철환원 미생물을 이용한 3가 철의 환원에 관한 연구)

  • 임현정;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.250-253
    • /
    • 2002
  • Remediation of groundwater using zero valent iron filings has received considerable attention in recent years. However, zero valent iron is gradually transformed to iron(III) oxides at permeable reactive barriers, so the reduction of iron(III) oxides can enhance the longevity of the reactive barriers. In this study, microbial reduction of Fe(III) was performed in anaerobic condition. A medium contained nutrients similar to soil solution. The medium was autoclaved and deoxygenated by purging with 99.99% $N_2$ and pH was buffered to 6, while the temperature was regulated as 2$0^{\circ}C$. Activity of iron reducing bacteria were not affected by chlorinated organics but affected by iron(III) oxide. Although perchloroethylene(PCE) was not degraded with only ferric oxide, PCE was reduced to around 50% with ferric oxide and microorganism. It shows that reduced iron can dechlorinate PCE.

  • PDF

Characterization of Behavior of Colloidal Zero-Valent Iron and Magnetite in Aqueous Environment (나노크기의 교질상 영가철 및 자철석에 대한 수용상의 거동특성)

  • Lee, Woo Chun;Kim, Soon-Oh;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.95-108
    • /
    • 2015
  • Nano-sized iron colloids are formed as acid mine drainage is exposed to surface environments and is introduced into surrounding water bodies. These iron nanomaterials invoke aesthetic contamination as well as adverse effects on aqueous ecosystems. In order to control them, the characteristics of their behaviour should be understood first, but the cumulative research outputs up to now are much less than the expected. Using zero-valent iron (ZVI) and magnetite, this study aims to investigate the behaviour of iron nanomaterials according to the change in the composition and pH of background electrolyte and the concentration of natural organic matter (NOM). The size and surface zeta potential of iron nanomaterials were measured using dynamic light scattering. Characteristic behaviour, such as aggregation and dispersion was compared each other based on the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory. Whereas iron nanomaterials showed a strong tendency of aggregation at the pH near point of zero charge (PZC) due to electrostatic attraction between particles, their dispersions became dominant at the pH which was higher or lower than PZC. In addition, the behaviour of iron nanomaterials was likely to be more significantly influenced by cations than anions in the electrolyte solutions. Particularly, it was observed that divalent cation influenced more effectively than monovalent cation in electrostatic attraction and repulsion between particles. It was also confirmed that the NOM enhanced the dispersion nanomaterials with increasing the negative charge of nanomaterials by coating on their surface. Under identical conditions, ZVI aggregated more easily than magnetite, and which would be attributed to the lower stability and larger reactivity of ZVI.

A Study on Transport Characteristics of CMC-modified Zero Valent Iron (ZVI) Nanoparticles in Porous Media (다공성 매질내에서 CMC로 표면개질된 영가철 나노입자의 이동 특성에 관한 연구)

  • Cho, Yun-Chul;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.101-107
    • /
    • 2009
  • Carboxymethyl cellulose (CMC) as stabilizer is expected to facilitate in-situ delivery of zero-valent iron (ZVI) nanoparticles in a contaminated aquifer because it increases dispersity of ZVI nanoparticles. This work investigated the transport of CMC-stabilized ZVI nanoparticles (CMC-Fe) using column breakthrough experiments. The ZVI nanoparticles (100 mg/L Fe) were transportable through sand porous media. In contrast, non-stabilized ZVI nanoparticles rapidly agglomerate in solution and are stopped in sand porous media. At pH 7 of solution approximately 80% CMC-Fe were eluted. When the pH of solution is below 5, 100% CMC-Fe were eluted. These results suggest that the mobility of CMCFe was increased as pH decreases. In the mobility test under different ionic strengths using $Na^+$ and $Ca^{2+}$ ions, there was no signigficant difference in the mobility of CMC-Fe. Also, in the experiments of effect of clay and natural organic mater (NOM) on the mobility of ZVI, there was no significant difference in the mobility of CMC-Fe not only between 1 and 5% clay, but 100 and 1000 mg/L NOM. The results from this work suggests that the CMC-Fe nanoparticles could be easily delivered into the subsurface over a broad range of ionic strength, clay and NOM.