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ON CLASSES OF CERTAIN ANALYTIC FUNCTIONS
DEFINED BY MULTIPLIER TRANSFORMATIONS

Sanc¢ Ho LEe AND NaAK Eun CHO

ABSTRACT. The purpose of the present paper 15 to introduce a new
class Py (@) of analytic functions defined by a multiplier transfor-
mation and to investigate some properties for the class Py, p{a). Fur-
thermore, we consider an integrat of functions belonging to the class
P, pla).

1. Introduction

Let A, denote the class of functions of the form

flz)=2F + iak+pzk+” (peN={1,2,..})
k=1

which are analytic in the unit disk & = {# : |2] < 1}. For any integer
n, we define the multiplier transformation I™f of functions f € Ap by

o0 —n
k i
=75 () T
k=1

Obviously, we have

I"(I™f(z)) = I""™ f(2)
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for all integers m and n. For p = 1, the operators I™ are the mul-
tiplier transformations studied by Uralegaddi and Somanatha [7] and
are closely related to the multiplier transformations introduced by Flett

2].

For any integer n, let P, ,(a) denote the class of functions f € A,
satisfying the condition

R»e{(fz:—g))’}>a (0 < a<p, z€lU).

In the present paper, we prove that for the classes P, p(a) of func-
tions in Ay, Pnp{a) C Pni1p(e) holds. Since Py p{a) is the class of
functions which satisfy the condition

Re{‘;(z):}>a O<a<p z€l),

all functions in P, () are p-valent for nonpositive integers n [6]. We
also obtain a sufficient condition for p-valence. Furthermore, we inves-
tigate some properties in connection with certain integral transform.

2. Properties of the class P, ;(a)

In order to derive our results, we need the following lemma due to

Jack [3].

LEMMA 2.1. Let w be non-constant analytic in U = {z: |2| < 1},
w(0) = 0. If jw| attains its marimum value on the circle |2| = r < 1
at zp, we have zow'(20) = kw(20) where k is a real number, k > 1.

With the help of Lemma 2.1, we now derive :

THEOREM 2.1. For any integer n, Pp () C Ppy1,p(8), where

_2(p+La+p
h= 20p+1) (21)
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PROOF. Let f € Pp,(a). Define an analytic function w in i by

I" (=) p+ (28— plw(z)
2Pl 1+w(z)

where [ is given by (2.1). Clearly, w(0) = 0 and w(z) # —1. Using
the identity

(2.2)

(I f(2)) = (p+ 1" f(2) — 1" f(2)
and differentiating (2.2), we obtain

(I"f(2)) _p+(@2B-—plw(z) 2(p— Bew'(2)
= — . (2.3)
2Pt 1+ w(z) (p+ 1)1+ w(2))?
We claim that {w(z)] < 1 for z € U. Otherwise, by Lemma 2.1, there
exists a point zg in U such that

zow' (zg) = kw(2q) (2.4)

where |w(29)| = 1 and & > 1. The equa,tlon (2.3) in conjunction with
(2.4) gives

I f(z)) _ p+(28-plw(z)  2p— B)kw(z)
271 IT+w(zo) P+ 11 +w(z0)*

Writing w(2) = u + #v and taking the real part of (2.5), we have

{(I");(wzlg)) —a}zﬁ—a—Q(p—ﬂ)kRe{ u+ 1w [}

25 (p +1(l+u+w\)‘7
p—p

Ap+1)

This contradicts the hypothesis that f € P, (). Hence jw(z)| < 1
for z € U and it follows from(2.2) that f € Pr1p(a).

(2.5)

<p-a-

Since S is greater than « in Theorem 2.1, we have :
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COROLLARY 2.1. For any integer n, Ppp(0) C Patiplo).

REMARK 2.1. Since Py () is the class of p-valent functions [6}, it
follows from Theorem 2.1 that all functions in P, p(c) are p-valent for
any nonpositive integers.

Next, we prove :

THEOREM 2.2. Let f € Py p(a) and let F, be the integral operator
defined by
ptc

Fo(2) = pos

/ £ f(0)dt (¢ > —p). (2.7)
0
Then F. € Ppp(a).
PROOF. From the definition of F,, we obtain
AI"Fe(2)) = (c+p)I" f(2) - I"Fu(2). (2.8)
Define an analytic function w in U by
(I"Fe(2)) _ p+(28 - p)w(2)
2p1 1+w(z)
Then, w(0) = 0 and w(z) # ~1. Using the identity (2.8) and differen-
tiating (2.9), we have
U"f(z)) _p+(28—plw(z) 2(p—pB)ew'(2)
zp—1 1+ w(z) (c+p)(1+ w(2))?

Now proceeding as in the proof of Theorem 2.1, we can show that

F, € Ppp(a).

(2.9)

THEOREM 2.3. Let f € A, and satisfy the condition

Re{%_(j_)):} >a - 2&__‘_0;) 0<a<pzeld).

Then F, € Py, p(a), where F, is given by (2.7).
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PROOF. The proof of this theorem is similar to that of Theorem 2.2

and so we omit it.

Putting 7 = 0 and @ = 0 in Theorem 2.3, we have the following

COROLLARY 2.2. If f € A, and satisfies the condition

f'(z) P
LAR7 SN S U
Re{zp T 5 3 (z €U),
then the integral operator F. defined by (2.7) belongs to Po,(0).

REMARK 2.2. For p = 1, Corollary 2.2 is stronger than the result
of Bernardi [1] ; Re{f’(2)} > 0 implies Re{F/{2)} > 0. If we further
put ¢ =1, we also extends the result obtained by Libera [4].

Finally, we obtain a converse of Theorem 2.2 in the following

THEOREM 2.4. Let F, € P, p(a) and let f be defined as in (2.7).
Then f € Pnp(0) in|z| < v(p,c), where

r(p,c) = Pre (2.10)

1+/(p+o?+1
Then the result is sharp.

PROOF. Since F, € Py p(a), we can write

2(I*F(2)Y = 2P[a + (p — @)u(2)], (2.11)

where u is analytic in #,u(0) = 1 and Re{u(2)} > 0 in /. Using (2.8)
and differentiating (2.11), we get

a"f(z))" _
s

—_ _— 2.12
pP— & p+tc ( )
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Using the well-known estimate |zu/(2)] < 2r/(1—r?)Re{u(z)} (l2| =),
(2.12) yields

Re { (In’;fz_));_ a} > (1 - (pﬂf(z - 7‘2)) Reu(z).  (2.13)

The right-hand side of (2.13) is positive provided r < r{p, c) given by
(2.10). Hence f € P, p(a) for |z] < r{p,c). The result is sharp for the
function f defined by

zlwc

£l2) =

where F, is given by

o C(z“'Fc(z))’ (c> —p;z €U),

(I"Fy(2)) = 2Pt (p+ (ff:;p)z) (0<a<pzeld).

REMARK 2.3. Takingn = @ = 0 and p = 1 in Theorem 2.4, we
obtain the result by Bernardi [1]. If we further put ¢ = 1, then we have
the result obtained by Livingston [5].
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