ON CLASSES OF CERTAIN ANALYTIC FUNCTIONS

 DEFINED BY MULTIPLIER TRANSFORMATIONSSang Ho Lee and Nak Eun Сho

Abstract

The purpose of the present paper is to introduce a new class $\mathcal{P}_{n, p}(\alpha)$ of analytıc functions defined by a multuplier transformation and to investıgate some properties for the class $p_{n_{r} p}(\alpha)$. Furthermore, we consider an integral of functions belonging to the class $\mathcal{P}_{n, p}(\alpha)$.

1. Introduction

Let \mathcal{A}_{p} denote the class of functions of the form

$$
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p} \quad(p \in \mathbb{N}=\{1,2, \ldots\})
$$

which are analytic in the unit disk $\mathcal{U}=\{z:|z|<1\}$. For any integer n, we define the multiplier transformation $I^{n} f$ of functions $f \in A_{p}$ by

$$
I^{n} f(z)=z^{p}+\sum_{k=1}^{\infty}\left(\frac{k+p+1}{p+1}\right)^{-n} a_{k+p} z^{k+p} .
$$

Obviously, we have

$$
I^{n}\left(I^{m} f(z)\right)=I^{n+m} f(z)
$$

Recerved May 2, 2000.
2000 Mathematics Subject Classification: $30 \mathrm{C45}$.
Key words and phrases: multipher transformation, p-valent, integral transform.
This work was supported by Pukyong National University Grant.
for all integers m and n. For $p=1$, the operators I^{n} are the multiplier transformations studied by Uralegaddi and Somanatha [7] and are closely related to the multiplier transformations introduced by Flett [2].

For any integer n, let $\mathcal{P}_{n, p}(\alpha)$ denote the class of functions $f \in \mathcal{A}_{p}$ satisfying the condition

$$
\operatorname{Re}\left\{\frac{\left(I^{n} f(z)\right)^{\prime}}{z^{p-1}}\right\}>\alpha \quad(0 \leq \alpha<p, z \in \mathcal{U}) .
$$

In the present paper, we prove that-for the classes $\mathcal{P}_{n, p}(\alpha)$ of functions in $\mathcal{A}_{p}, \mathcal{P}_{n, p}(\alpha) \subset \mathcal{P}_{n+1, p}(\alpha)$ holds. Since $\mathcal{P}_{0, p}(\alpha)$ is the class of functions which satisfy the condition

$$
\operatorname{Re}\left\{\frac{f(z)^{\prime}}{z^{p-1}}\right\}>\alpha \quad(0 \leq \alpha<p, z \in U)
$$

all functions in $\mathcal{P}_{n, p}(\alpha)$ are p-valent for nonpositive integers $n[6]$. We also obtain a sufficient condition for p-valence. Furthermore, we investigate some properties in connection with certain integral transform.

2. Properties of the class $\mathcal{P}_{n, p}(\alpha)$

In order to derive our results, we need the following lemma due to Jack [3].

Lemma 2.1. Let w be non-constant analytic in $\mathcal{U}=\{z:|z|<1\}$, $w(0)=0$. If $|w|$ attains its maximum value on the circle $|z|=r<1$ at z_{0}, we have $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$ where k is a real number, $k \geq 1$.

With the help of Lemma 2.1, we now derive :
Theorem 2.1. For any integer $n, \mathcal{P}_{n, p}(\alpha) \subset \mathcal{P}_{n+1, p}(\beta)$, where

$$
\begin{equation*}
\beta=\frac{2(p+1) \alpha+p}{2(p+1)} . \tag{2.1}
\end{equation*}
$$

Proof. Let $f \in \mathcal{P}_{n, p}(\alpha)$. Define an analytic function w in \mathcal{U} by

$$
\begin{equation*}
\frac{\left(I^{n+1} f(z)\right)^{\prime}}{z^{p-1}}=\frac{p+(2 \beta-p) w(z)}{1+w(z)} \tag{2.2}
\end{equation*}
$$

where β is given by (2.1). Clearly, $w(0)=0$ and $w(z) \neq-1$. Using the identity

$$
z\left(I^{n} f(z)\right)^{\prime}=(p+1) I^{n-1} f(z)-I^{n} f(z)
$$

and differentiating (2.2), we obtain

$$
\begin{equation*}
\frac{\left(I^{n} f(z)\right)^{\prime}}{z^{p-1}}=\frac{p+(2 \beta-p) w(z)}{1+w(z)}-\frac{2(p-\beta) z w^{\prime}(z)}{(p+1)(1+w(z))^{2}} \tag{2.3}
\end{equation*}
$$

We claim that $|w(z)|<1$ for $z \in U$. Otherwise, by Lemma 2.1, there exists a point z_{0} in \mathcal{U} such that

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right) \tag{2.4}
\end{equation*}
$$

where $\left|w\left(z_{0}\right)\right|=1$ and $k \geq 1$. The equation (2.3) in conjunction with (2.4) gives

$$
\begin{equation*}
\frac{\left(I^{n} f\left(z_{0}\right)\right)^{\prime}}{z_{0}^{p-1}}=\frac{p+(2 \beta-p) w\left(z_{0}\right)}{1+w\left(z_{0}\right)}-\frac{2(p-\beta) k w\left(z_{0}\right)}{(p+1)\left(1+w\left(z_{0}\right)\right)^{2}} \tag{2.5}
\end{equation*}
$$

Writing $w\left(z_{0}\right)=u+i v$ and taking the real part of (2.5), we have

$$
\begin{aligned}
\operatorname{Re}\left\{\frac{\left(I^{n} f\left(z_{0}\right)\right)^{\prime}}{z_{0}^{p-1}}-\alpha\right\} & \left.=\beta-\alpha-2(p-\beta) k \operatorname{Re}\left\{\frac{u+i v}{(p+1)(1+u+i v)^{2}}\right\}\right) \\
& \leq \beta-\alpha-\frac{p-\beta}{2(p+1)}=0
\end{aligned}
$$

This contradicts the hypothesis that $f \in \mathcal{P}_{n, p}(\alpha)$. Hence $|w(z)|<1$ for $z \in U$ and it follows from(2.2) that $f \in \mathcal{P}_{n+1, p}(\alpha)$.

Since β is greater than α in Theorem 2.1, we have :

Corollary 2.1. For any integer $n, \mathcal{P}_{n, p}(\alpha) \subset \mathcal{P}_{n+1, p}(\alpha)$.
Remark 2.1. Since $\mathcal{P}_{0, p}(\alpha)$ is the class of p-valent functions [6], it follows from Theorem 2.1 that all functions in $\mathcal{P}_{n, p}(\alpha)$ are p-valent for any nonpositive integers.

Next, we prove :
THEOREM 2.2. Let $f \in \mathcal{P}_{n, p}(\alpha)$ and let F_{c} be the integral operator defined by

$$
\begin{equation*}
F_{c}(z)=\frac{p+c}{z^{c}} \int_{0}^{z} t^{c-?} f(t) d t \quad(c>-p) \tag{2.7}
\end{equation*}
$$

Then $F_{c} \in \mathcal{P}_{n, p}(\alpha)$.
Proof. From the definition of F_{c}, we obtain

$$
\begin{equation*}
z\left(I^{n} F_{c}(z)\right)^{\prime}=(c+p) I^{n} f(z)-c I^{n} F_{c}(z) \tag{2.8}
\end{equation*}
$$

Define an analytic function w in \mathcal{U} by

$$
\begin{equation*}
\frac{\left(I^{n} F_{c}(z)\right)^{\prime}}{z^{p-1}}=\frac{p+(2 \beta-p) w(z)}{1+w(z)} . \tag{2.9}
\end{equation*}
$$

Then, $w(0)=0$ and $w(z) \neq-1$. Using the identity (2.8) and differentiating (2.9), we have

$$
\frac{\left(I^{n} f(z)\right)^{\prime}}{z^{p-1}}=\frac{p+(2 \beta-p) w(z)}{1+w(z)}-\frac{2(p-\beta) z w^{\prime}(z)}{(c+p)(1+w(z))^{2}} .
$$

Now proceeding as in the proof of Theorem 2.1, we can show that $F_{c} \in \mathcal{P}_{n, p}(\alpha)$.

Theorem 2.3. Let $f \in \mathcal{A}_{p}$ and satisfy the condition

$$
\operatorname{Re}\left\{\frac{\left(I^{n} f(z)\right)^{\prime}}{z^{p-1}}\right\}>\alpha-\frac{p-\alpha}{2(p+c)} \quad(0 \leq \alpha<p ; z \in \mathcal{U})
$$

Then $F_{c} \in \mathcal{P}_{n, p}(\alpha)$, where F_{c} is given by (2.7).

Proof. The proof of this theorem is similar to that of Theorem 2.2 and so we omit it.

Putting $n=0$ and $\alpha=0$ in Theorem 2.3, we have the following
Corollary 2.2. If $f \in \mathcal{A}_{p}$ and satisfies the condition

$$
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>-\frac{p}{2(p+c)} \quad(z \in \mathcal{U})
$$

then the integral operator F_{c} defined by (2.7) belongs to $\mathcal{P}_{0, p}(0)$.

Remark 2.2. For $p=1$, Corollary 2.2 is stronger than the result of Bernardi [1] ; $\operatorname{Re}\left\{f^{\prime}(z)\right\}>0$ implies $\operatorname{Re}\left\{F_{c}^{\prime}(z)\right\}>0$. If we further put $c=1$, we also extends the result obtained by Libera [4].

Finally, we obtain a converse of Theorem 2.2 in the following
Theorem 2.4. Let $F_{c} \in \mathcal{P}_{n, p}(\alpha)$ and let f be defined as in (2.7). Then $f \in \mathcal{P}_{n, p}(\alpha)$ in $|z|<r(p, c)$, where

$$
\begin{equation*}
r(p, c)=\frac{p+c}{1+\sqrt{(p+c)^{2}+1}} . \tag{2.10}
\end{equation*}
$$

Then the result is sharp.
Proof. Since $F_{c} \in \mathcal{P}_{n, p}(\alpha)$, we can write

$$
\begin{equation*}
z\left(I^{n} F_{c}(z)\right)^{\prime}=z^{p}[\alpha+(p-\alpha) u(z)] \tag{2.11}
\end{equation*}
$$

where u is analytic in $\mathcal{U}, u(0)=1$ and $\operatorname{Re}\{u(z)\}>0$ in \mathcal{U}. Using (2.8) and differentiating (2.11), we get

$$
\begin{equation*}
\frac{\frac{\left(I^{n} f(z)\right)^{\prime}}{z^{p-1}}-\alpha}{p-\alpha}=u(z)+\frac{z u^{\prime}(z)}{p+c} . \tag{2.12}
\end{equation*}
$$

Using the well-known estimate $\left|z u^{\prime}(z)\right| \leq 2 r /\left(1-r^{2}\right) \operatorname{Re}\{u(z)\}(|z|=r)$, (2.12) yields

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(I^{n} f(z)\right)^{\prime}-\alpha}{p-\alpha}\right\} \geq\left(1-\frac{2 r}{(p+c)\left(1-r^{2}\right)}\right) \operatorname{Re} u(z) \tag{2.13}
\end{equation*}
$$

The right-hand side of (2.13) is positive provided $r<r(p, c)$ given by (2.10). Hence $f \in \mathcal{P}_{n, p}(\alpha)$ for $|z|<r(p, c)$. The result is sharp for the function f defined by

$$
f(z)=\frac{z^{1-c}}{p+c}\left(z^{c} F_{c}(z)\right)^{\prime} \quad(c>-p ; z \in \mathcal{U})
$$

where F_{c} is given by

$$
\left(I^{n} F_{c}(z)\right)^{\prime}=z^{p-1}\left(\frac{p+(2 \alpha-p) z}{1+z}\right) \quad(0 \leq \alpha<p ; z \in \mathcal{U})
$$

REMARK 2.3. Taking $n=\alpha=0$ and $p=1$ in Theorem 2.4, we obtain the result by Bernardi [1]. If we further put $c=1$, then we have the result obtained by Livingston [5].

References

[1] S. D. Bernardi, Convex and starlake functzons, Trans. Amer. Math. Soc. 135 (1969), 429-446.
[2] T.M. Flett, The dual of an mequality of Hardy and Littlewood and some related inequalztzes, J. Math. Anal. Appl. 38 (1972), 746-765.
(3] I.S. Jack, Functions starlake and convex of order α, J. London Math. Soc. 3(2) (1971), 469-474.
[4] R. T. Libera, Some classes of regular functzons, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[5] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966), 352-357.
[6] T. Umezawa, Mutivalently close-to-convex functıons, Proc. Amer. Math. Soc. 8 (1957), 869-874.
[7] B. A. Uralegaddi and C. Somanatha, Certain classes of unvvalent functions, Current Topics in Analytıc Function Theory (Editors; H. M. Srivastava and S. Owa), World Scientific Publ. Co. (1992), 371-374.

Sang Ho Lee
Haeundae High School
278 Woo 1 Dong, Haeundae Ku
Pusan 612-021, Korea
Nak Eun Cho
Division of Mathematical Sciences
Pukyong National University
Pusan 608-737, Korea

