• Title/Summary/Keyword: p-n heterojunction

Search Result 103, Processing Time 0.035 seconds

Characteristics of Ga2O3/4H-SiC Heterojunction Diode with Annealing Process (후열 처리에 따른 Ga2O3/4H-SiC 이종접합 다이오드 특성 분석)

  • Lee, Young-Jae;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.155-160
    • /
    • 2020
  • Ga2O3/n-type 4H-SiC heterojunction diodes were fabricated by RF magnetron sputtering. The optical properties of Ga2O3 and electrical properties of diodes were investigated. I-V characteristics were compared with simulation data from the Atlas software. The band gap of Ga2O3 was changed from 5.01 eV to 4.88 eV through oxygen annealing. The doping concentration of Ga2O3 was extracted from C-V characteristics. The annealed oxygen exhibited twice higher doping concentration. The annealed diodes showed improved turn-on voltage (0.99 V) and lower leakage current (3 pA). Furthermore, the oxygen-annealed diodes exhibited a temperature cross-point when temperature increased, and its ideality factor was lower than that of as-grown diodes.

UHV 스퍼터링 방법으로 증착된 n-ZnO/p-GaN 이종접합의 전기적 및 광학적 특성

  • Jo, Seong-Guk;Lee, Dong-Uk;Kim, Eun-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.326-326
    • /
    • 2012
  • ZnO와 GaN는 비슷한 특성을 가지고 있다. 즉, 상온에서 ZnO의 밴드갭은 3.36 eV이며 GaN은 3.39 eV이고, 두 물질 모두 Wurzite 구조이며, 격자상수 또한 비슷하다. 밴드갭 에너지가 매우 큰 GaN와 ZnO는 청색 또는 자외선 영역의 발광 또는 수광 소자의 응용성을 가지고 있다. 특히, ZnO는 exciton binding energy가 상온에서 60 meV로 매우 큰 편이기 때문에 상온에서 발광소자로서 안정성을 보장할 수 있어서 발광소자나 광측정 장치 등에 응용이 기대되고 있다. 이러한 장점에도 불구하고 n-ZnO/p-GaN 이종접합 구조에 대한 연구가 아직까지 미미한 상태이다. 본 연구에서는 UHV 스퍼터링 장치로 상온에서 형성한 n-ZnO/p-GaN 이종접합 다이오드 구조에 대한 전기적 및 광학적 물성을 분석하였다. 먼저 p형 GaN 기판 위에 ZnO 박막을 증착한 후에, ZnO 박막의 결정성을 개선시키기 위해 rapid thermal annealing 시스템을 이용하여400, 500, $600^{\circ}C$에서 각각 1분 동안 후 열처리를 실시하였다. 이때 $600^{\circ}C$에서 후 열처리한 ZnO박막은 $5{\times}10^{16}cm^{-3}$인 n형으로 나타났다. n-ZnO/p-GaN 이종접합 다이오드구조에 대한 I-V 및 photoluminescence 측정 등을 통해 전기적 및 광학적 특성을 분석하였다.

  • PDF

Investigation of GaN Negative Capacitance Field-Effect Transistor Using P(VDF-TrFE) Organic/Ferroelectric Material (P(VDF-TrFE) 유기물 강유전체를 활용한 질화갈륨 네거티브 커패시턴스 전계효과 트랜지스터)

  • Han, Sang-Woo;Cha, Ho-Young
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.209-212
    • /
    • 2018
  • In this work, we developed P(VDF-TrFE) organic/ferroelectric material based metal-ferroelectric-metal (MFM) capacitors in order to improve the switching characteristics of gallium nitride (GaN) heterojunction field-effect transistors (HFET). The 27 nm-thick P(VDF-TrFE) MFM capacitors exhibited about 60 ~ 96 pF capacitance with a polarization density of $6{\mu}C/cm^2$ at 4 MV/cm. When the MFM capacitor was connected in series with the gate electrode of GaN HFET, the subthreshold slope decreased from 104 to 82 mV/dec.

Gas Sensing Mechanism of CuO/ZnO Heterojunction Gas Sensor (이종접합 가스센서의 가스감지기구)

  • Yi, S.H.;Chu, G.S.;Park, J.H.;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1114-1116
    • /
    • 1995
  • P/N(CuO/ZnO) Heterojunction gas sensors were made by 2-step sintering methods and its gas sensing property was measured by varying the injected gases and the operating temperatures. As the applied voltage was increased in air ambients, the current-voltage characteristics shown the ohmic properties. However, when the CO gas ambients, 500 ppm at $200^{\circ}C$, the current-voltage characteristics behaves like a rectifying diode s after 3 mins later and its conduction mechanism is discussed qualitatively for the first times.

  • PDF

Size Control of PbS Colloidal Quantum Dots and Their Application to Photovoltaic Devices

  • Lee, Wonseok;Ryu, Ilhwan;Choi, Geunpyo;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.249.1-249.1
    • /
    • 2015
  • Quantum dots (QDs) are attracting growing attention for photovoltaic device applications because of their unique electronic, optical and physical properties. Lead sulfide (PbS) QDs are one of the most widely studied materials for the devices and known to have size-tunable properties. In this context, we investigated the relationship between the size of PbS QDs and two synthesizing conditions, a concentration of ligand, oleic acid in this work, and injection temperature. The inverted colloidal quantum dot solar cells based on the heterojunction of n-type zinc oxide layer and p-type PbS QDs were also fabricated. The size of the QDs and cell properties were observed to depend on both the QD synthesizing conditions, and hence the overall efficiency of the cell could vary even though the size of QDs used was same. The QD synthesizing conditions were finally optimized for the maximum cell efficiency.

  • PDF

Investigation of InAs/InGaAs/InP Heterojunction Tunneling Field-Effect Transistors

  • Eun, Hye Rim;Woo, Sung Yun;Lee, Hwan Gi;Yoon, Young Jun;Seo, Jae Hwa;Lee, Jung-Hee;Kim, Jungjoon;Kang, In Man
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1654-1659
    • /
    • 2014
  • Tunneling field-effect transistors (TFETs) are very applicable to low standby-power application by their virtues of low off-current ($I_{off}$) and small subthreshold swing (S). However, low on-current ($I_{on}$) of silicon-based TFETs has been pointed out as a drawback. To improve $I_{on}$ of TFET, a gate-all-around (GAA) TFET based on III-V compound semiconductor with InAs/InGaAs/InP multiple-heterojunction structure is proposed and investigated. Its performances have been evaluated with the gallium (Ga) composition (x) for $In_{1-x}Ga_xAs$ in the channel region. According to the simulation results for $I_{on}$, $I_{off}$, S, and on/off current ratio ($I_{on}/I_{off}$), the device adopting $In_{0.53}Ga_{0.47}As$ channel showed the optimum direct-current (DC) performance, as a result of controlling the Ga fraction. By introducing an n-type InGaAs thin layer near the source end, improved DC characteristics and radio-frequency (RF) performances were obtained due to boosted band-to-band (BTB) tunneling efficiency.

Effect of Interface Reaction between ZnO:Al and Amorphous Silicon on Silicon Heterojunction Solar Cells (실리콘 이종 접합 태양 전지 특성에 대한 ZnO:Al과 비정질 실리콘 계면 반응의 영향)

  • Kang, Min-Gu;Tark, Sung-Ju;Lee, Jong-Han;Kim, Chan-Seok;Jung, Dae-Young;Lee, Jung-Chul;Yoon, Kyung-Hoon;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.120-124
    • /
    • 2011
  • Silicon heterojunction solar cells have been studied by many research groups. In this work, silicon heterojunction solar cells having a simple structure of Ag/ZnO:Al/n type a-Si:H/p type c-Si/Al were fabricated. Samples were fabricated to investigate the effect of transparent conductive oxide growth conditions on the interface between ZnO:Al layer and a-Si:H layer. One sample was deposited by ZnO:Al at low working pressure. The other sample was deposited by ZnO:Al at alternating high working pressure and low working pressure. Electrical properties and chemical properties were investigated by light I-V characteristics and AES method, respectively. The light I-V characteristics showed better efficiency on sample deposited by ZnO:Al by alternating high working pressure and low working pressure. Atomic concentrations and relative oxidation states of Si, O, and Zn were analyzed by AES method. For poor efficiency samples, Si was diffused into ZnO:Al layer and O was diffused at the interface of ZnO:Al and Si. Differentiated O KLL spectra, Zn LMM spectra, and Si KLL spectra were used for interface reaction and oxidation state. According to AES spectra, sample deposited by high working pressure was effective at reducing the interface reaction and the Si diffusion. Consequently, the efficiency was improved by suppressing the SiOx formation at the interface.

Transparent Photovoltaic Device using Two-dimensional Transition-metal Dichalcogenides (이차원 반도체 소재를 이용한 투명 태양전지 특성에 관한 연구)

  • Jwa, Tae-Hun;Hyun, Chul-Min;Kim, Min-Sik;Lee, Hyeok-ju;Ahn, Ji-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.186-190
    • /
    • 2016
  • In this study, we fabricated the transparent photovoltaic device using 2-dimensional transition-metal dichalcogenides and investigated the transparency and photovoltaic characteristics. P-n heterojunction was formed by mechanical exfoliation and aligned transfer method on the transparent sheet using n-type $MoS_2$ and p-type $WSe_2$. Our transparent photovoltaic device exhibited the open-circuit voltage of ~ 0.15 V and the short-circuit current of 0.48 nA under illumination of white light.

Sol-Gel법을 이용한 YZO/Si 이종접합 구조의 제작과 정류특성

  • Heo, Seong-Eun;Kim, Won-Jun;Kim, Chang-Min;Lee, Hwang-Ho;Lee, Byeong-Ho;Lee, Yeong-Min;Kim, Deuk-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.350-350
    • /
    • 2013
  • Sol-gel법을 이용하여 p-Si 기판위에 yttrium이 도핑된 ZnO (YZO)를 성장하였다. ZnO의 precursor로는 zinc acetate dihydrate를, yttrium의 source로는 yttrium acetate hydrate를 사용하였으며, 용매와 안정제로는 각각 2-methoxy ethanol과 monoethanolamine (MEA)를 사용하였다. yttrium의 doping 농도에 따른 영향을 알아보기 위하여 1~4 at.%로 제작된 YZO sol을 각각 p-type Si 기판에 성장하였으며, 이 후 furnace를 이용하여 500oC에서 1시간 동안 열처리하였다. 성장된 YZO 박막의 표면과 두께를 SEM을 통하여 확인하였으며, XRD를 통한 구조적인 특성을 분석한 결과 모든 박막에서 뚜렷한 c-축 배양성을 갖는 ZnO (0002)피크를 확인하였다. Hall effect를 통하여 YZO는 모두 n-type 특성을 나타낸다는 것을 확인하였으며, 광학적인 특성은 PL을 통해서 분석하였다. n-YZO/p-Si 이종접합의 전류-전압 특성을 분석한 결과 뚜렷한 정류특성을 나타내었다.

  • PDF

I-V characteristics of resonant interband tunneling diodes with single quantum well structure (단일 양자 우물 구조로 된 밴드간 공명 터널링 다이오드의 전류-전압 특성)

  • 김성진;박영석
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.27-32
    • /
    • 1997
  • In resonant tunneling diodes with the quantum well structure showing the negative differential resistance (NDR), it is essential to increase both the peak-to-valley current ratio (PVCR) and the peak current desnity ( $J_{p}$) for the accurate digital switching operation and the high output of the device. In this work, a resonant interband tunneling diode (RITD) with single quantum well structure, which is composed of I $n_{0.47}$As/I $n_{0.52}$A $l_{0.48}$As heterojunction on the InP substrate, is fabricated ot improve PVCR and JP, and then the dependence of I-V charcteristics on the width of the quantum well was investigated.d.ted.d.

  • PDF