DOI QR코드

DOI QR Code

Transparent Photovoltaic Device using Two-dimensional Transition-metal Dichalcogenides

이차원 반도체 소재를 이용한 투명 태양전지 특성에 관한 연구

  • Jwa, Tae-Hun (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Hyun, Chul-Min (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Kim, Min-Sik (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Lee, Hyeok-ju (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Ahn, Ji-Hoon (Department of Electronic Material Engineering, Korea Maritime and Ocean University)
  • 좌태헌 (한국해양대학교 전자소재공학과) ;
  • 현철민 (한국해양대학교 전자소재공학과) ;
  • 김민식 (한국해양대학교 전자소재공학과) ;
  • 이혁주 (한국해양대학교 전자소재공학과) ;
  • 안지훈 (한국해양대학교 전자소재공학과)
  • Received : 2016.02.29
  • Accepted : 2016.03.09
  • Published : 2016.04.30

Abstract

In this study, we fabricated the transparent photovoltaic device using 2-dimensional transition-metal dichalcogenides and investigated the transparency and photovoltaic characteristics. P-n heterojunction was formed by mechanical exfoliation and aligned transfer method on the transparent sheet using n-type $MoS_2$ and p-type $WSe_2$. Our transparent photovoltaic device exhibited the open-circuit voltage of ~ 0.15 V and the short-circuit current of 0.48 nA under illumination of white light.

Keywords

References

  1. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, Stretchable active-matrix organic light-emitting diode display using printable elastic conductor, Nat. Mater., 8 (2009) 494-499. https://doi.org/10.1038/nmat2459
  2. C. C. Lu, Y. C. Lin, C. H. Yeh, J. C. Huang, and P. W. Chiu, High mobility flexible graphene field-effect transistors with self-healing gate dielectrics, ACS Nano, 6 (2012) 4469-4474. https://doi.org/10.1021/nn301199j
  3. M. G. Chung, D. H. Kim, D. K. Seo, T. Kim, H. U. Im, H. M. Lee, J. B. Yoo, S. H. Hong, T. J. Kang, and Y. H. Kim, Flexible hydrogen sensors using graphene with palladium nanoparticle decoration, Sens. Actuators B, 169 (2012) 387-392. https://doi.org/10.1016/j.snb.2012.05.031
  4. W. J. Yu, S. Y. Lee, S. H. Chae, D. Perello, G. H. Han, M. Yun, and Y. H. Lee, Small Hysteresis Nanocarbon-based integrated circuits on flexible and transparent plastic substrate, Nano Lett., 11 (2011) 1344-1350. https://doi.org/10.1021/nl104488z
  5. C. C. Chen, L. Dou, R. Zhu, C. H. Chung, T. B. Song, Y. B. Zheng, S. Hawks, G. Li, P. S. Weiss, and Y. Yang, Visibly transparent polymer solar cells produced by solution processing, ACS Nano, 6 (2012) 7185-7190. https://doi.org/10.1021/nn3029327
  6. B. Chen, Z. Zuo, Y. Liu, Q. Zhan, Y. Xie, H. Yang, G. Dai, Z. Li, G. Xu, and R. Li, Tunable photovoltaic effects in transparent $Pb(Zr_{0.53},Ti_{0.47})O_3$ capacitors, App. Phys. Lett., 100 (2012) 173903. https://doi.org/10.1063/1.4709406
  7. W. Wang, Q. Zhao, H. Li, H. Wu, D. Zou, and D. Yu, Double-sided, ITO-Free, flexible dyesensitized solar cells based on metal wire/ZnO nanowire arrays, Adv. Funct. Mater., 22 (2012) 2775-2782. https://doi.org/10.1002/adfm.201200168
  8. J. H. Ahn, M. J Lee, H. Heo, J. H. Sung, K. Kim, H. Hwang, and M. H. Jo, Deterministic two-dimensional polymorphism growth of hexagonal n-type $SnS_2$ and orthorhombic p-type SnS crystals, Nano Lett., 15 (2015) 3703-3708. https://doi.org/10.1021/acs.nanolett.5b00079
  9. Y. Shi, H. Li, and L. Li, Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques, Chem. Soc. Rev., 44 (2015) 2744-2756. https://doi.org/10.1039/C4CS00256C
  10. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotech., 7 (2012) 699-712. https://doi.org/10.1038/nnano.2012.193
  11. D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano, 8 (2014) 1102-1120. https://doi.org/10.1021/nn500064s
  12. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotech., 9 (2014) 768-779. https://doi.org/10.1038/nnano.2014.207
  13. D. Akinwande, N. Petrone, and J. Hone, Twodimensional flexible nanoelectronics, Nat. Commun., 5 (2014) 5678. https://doi.org/10.1038/ncomms6678
  14. G. H. Lee, Y. J. Yu, X. Cui, N. Petrone, C. H. Lee, M. S. Choi, D. Y. Lee, C. Lee, W. J. Yoo, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim, and J. Hone, Flexible and transparent $MoS_2$ fieldeffect transistors on hexagonal boron nitridegraphene heterostructures, ACS Nano, 7 (2013) 7931-7936. https://doi.org/10.1021/nn402954e
  15. J. Pu, Y. Yomogida, K. K. Liu, L. J. Li, Y. Iwasa, and T. Takenobu, Highly flexible $MoS_2$ thin-film transistors with ion gel dielectrics, Nano Lett., 12 (2012) 4013-4017. https://doi.org/10.1021/nl301335q
  16. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer $MoS_2$, Nano Lett., 10 (2010) 1271-1275. https://doi.org/10.1021/nl903868w
  17. R. Coehoorn, C. Haas, and R. A. de Groot, Electronic structure of $MoSe_2$, $MoS_2$, and WSe2. II. The nature of the optical band gaps, Phy. Rev. B, 35 (1987) 6203-6206. https://doi.org/10.1103/PhysRevB.35.6203