• 제목/요약/키워드: p-doped

검색결과 801건 처리시간 0.036초

MgO 도프된 Rutile의 Polaron 전도도 (Polaron Conductivity of Rutile Doped with MgO)

  • 김규홍;김형택;최재시
    • 대한화학회지
    • /
    • 제31권3호
    • /
    • pp.215-224
    • /
    • 1987
  • 0.35. 0.75 및 1.25mol% $MgO-TiO_2$계의 전기전도도가 $600{\sim}1100^{\circ}C$$10^{-8}{\sim}10^{-1}$ atm의 산소분압하에서 측정되었다. 일정한 산소분압하에서 $log{\sigma}$ vs. 1/T은 두 온도구간에서 직선관계를 보였으며 직선의 기울기로 부터 계산된 활성화에너지는 본성 영역과 외성 영역에서 각각 1.94eV 및 0.48eV이다. $log\;{\sigma}$ vs log $Po_2$는 본성 영역에서 ${\sigma}\;{\alpha}\;$Po_2^{-1/6}$이며 외성 영역에서 ${\sigma}\;{\alpha}\;$Po_2^{-1/4}$이다. 이 계의 결함구조는 외성 영역에서 $V\"{o}$이며 본성 영역에서 $Ti^3$.로 제안되었다. 특히 외성 영역에서 polaron model이 ${\sigma}$의 T 및 p 의존성으로 부터 규명되었다.

  • PDF

Salen-Aluminum Complexes as Host Materials for Red Phosphorescent Organic Light-Emitting Diodes

  • Bae, Hye-Jin;Hwang, Kyu-Young;Lee, Min-Hyung;Do, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3290-3294
    • /
    • 2011
  • The properties of monomeric and dimeric salen-aluminum complexes, [salen(3,5-$^tBu)_2$Al(OR)], R = $OC_6H_4-p-C_6H_6$ (H1) and R = [salen(3,5-$^tBu$)AlOPh]C$(CH_3)_2$ (H2) (salen = N,N'-bis-(salicylidene)-ethylenediamine) as host layer materials in red phosphorescent organic light-emitting diodes (PhOLEDs) were investigated. H1 and H2 exhibit high thermal stability with decomposition temperature of 330 and $370^{\circ}C$. DSC analyses showed that the complexes form amorphous glasses upon cooling of melt samples with glass transition temperatures of 112 and $172^{\circ}C$. The HOMO (ca. -5.2~-5.3 eV) and LUMO (ca. -2.3~-2.4 eV) levels with a triplet energy of ca. 1.92 eV suggest that H1 and H2 are suitable for a host material for red emitters. The PhOLED devices based on H1 and H2 doped with a red emitter, $Ir(btp)_2$(acac) (btp = bis(2-(2'-benzothienyl)-pyridinato-N,$C^3$; acac = acetylacetonate) were fabricated by vacuum-deposition and solution process, respectively. The device based on vacuum-deposited H1 host displays high device performances in terms of brightness, luminous and quantum efficiencies comparable to those of the device based on a CBP (4,4'-bis(Ncarbazolyl) biphenyl) host while the solution-processed device with H2 host shows poor performance.

Low-Temperature Si and SiGe Epitaxial Growth by Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition (UHV-ECRCVD)

  • Hwang, Ki-Hyun;Joo, Sung-Jae;Park, Jin-Won;Euijoon Yoon;Hwang, Seok-Hee;Whang, Ki-Woong;Park, Young-June
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.422-448
    • /
    • 1996
  • Low-temperature epitaxial growth of Si and SiGe layers of Si is one of the important processes for the fabrication of the high-speed Si-based heterostructure devices such as heterojunction bipolar transistors. Low-temperature growth ensures the abrupt compositional and doping concentration profiles for future novel devices. Especially in SiGe epitaxy, low-temperature growth is a prerequisite for two-dimensional growth mode for the growth of thin, uniform layers. UHV-ECRCVD is a new growth technique for Si and SiGe epilayers and it is possible to grow epilayers at even lower temperatures than conventional CVD's. SiH and GeH and dopant gases are dissociated by an ECR plasma in an ultrahigh vacuum growth chamber. In situ hydrogen plasma cleaning of the Si native oxide before the epitaxial growth is successfully developed in UHV-ECRCVD. Structural quality of the epilayers are examined by reflection high energy electron diffraction, transmission electron microscopy, Nomarski microscope and atomic force microscope. Device-quality Si and SiGe epilayers are successfully grown at temperatures lower than 600℃ after proper optimization of process parameters such as temperature, total pressure, partial pressures of input gases, plasma power, and substrate dc bias. Dopant incorporation and activation for B in Si and SiGe are studied by secondary ion mass spectrometry and spreading resistance profilometry. Silicon p-n homojunction diodes are fabricated from in situ doped Si layers. I-V characteristics of the diodes shows that the ideality factor is 1.2, implying that the low-temperature silicon epilayers grown by UHV-ECRCVD is truly of device-quality.

  • PDF

비휘발성 메모리 응용을 위한 VF2-TrFE 박막의 제작 및 특성 (Fabrications and Properties of VF2-TrFE Films for Nonvolatile Memory Application)

  • 정상현;변정현;김현준;김지훈;김광호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.388-388
    • /
    • 2010
  • In this study, Ferroelectric vinylidene fluoride-trifluoroethylene (VF2-TrFE) copolymer films were directly deposited on degenerated Si (n+, $0.002\;{\Omega}{\cdot}cm$) using by spin coating method. A 1~5 wt% diluted solution of purified vinylidene fluoride-trifluoroethylene (VF2:TrFE = 70:30) in a dimethylformamide (DMF) solvent were prepared and deposited on silicon wafers at a spin rate of 2000 ~ 4000 rpm for 2 ~ 30 seconds. After annealing in a vacuum ambient at 100 ~ $200^{\circ}C$ for 60 min, upper aluminum electrodes were deposited by vacuum evaporation for electrical measurement. X-ray diffraction results showed that the VF2-TrFE films on Si substrates had $\beta$-phase of copolymer structures. The capacitance on highly doped Si wafer showed hysteresis behavior like a butterfly shape and this result indicates clearly that the copolymer films have ferroelectric properties. The typical measured remnant polarization ($P_r$) and coercive filed ($E_c$) values were about $5.7\;{\mu}C/cm^2$ and 710 kV/em, respectively, in an applied electric field of ${\pm}$ 1.5 MV/em. The gate leakage current densities measured at room temperature was less than $7{\times}10^{-7}\; A/cm^2$ under a field of 1 MV/cm.

  • PDF

Bi0.48Sb1.52Te3의 열전특성에 대한 Pb 도핑 영향 (Effect of Pb Doping on the Thermoelectric Properties of Bi0.48Sb1.52Te3)

  • 문승필;김태완;김성웅;전우민;김진헌;이규형
    • 한국전기전자재료학회논문지
    • /
    • 제30권7호
    • /
    • pp.454-458
    • /
    • 2017
  • $Bi_2Te_3$-based alloys have been intensively investigated as active materials for thermoelectric power generation devices from low-temperature (< $250^{\circ}C$) waste heat. In the present study, we fabricated Pb-doped, p-type $Bi_{0.48}Sb_{1.52}Te_3$ polycrystalline bulks by using meltsolidification and spark plasma sintering techniques, and evaluated their thermoelectric transport properties in an effort to develop optimized composition for low-temperature power generation applications. The electronic and thermal transport properties of $Bi_{0.48}Sb_{1.52}Te_3$ could be manipulated by Pb doping. As a result, the temperature for a peak thermoelectric performance (zT) gradually shifted toward higher temperatures with Pb content, suggesting that thermoelectric power generation efficiency can be enhanced by controlled Pb doping.

정공블록킹층을 설치한 유기 EL의 적색발광특성 (Red Emission Properties of Organic EL Having Hole Blocking Layer)

  • 김형권;이은학
    • 대한전자공학회논문지SD
    • /
    • 제37권6호
    • /
    • pp.17-23
    • /
    • 2000
  • 본 연구에서는 Sq색소를 이용하여 적색발광의 디바이스를 제작하고, 발광효율을 증가시키기 위해 OXD7과 $Alq_3$층을 발광층과 음극사이에 삽입하여 그 효과를 관측하고, 기구특성을 검토하였다. 정공운송층으로서 TPD, 발광층 호스트재료로서 $Alq_3$, 게스트 재료로서 Sq를 사용하였다. 그 결과 $Alq_3$층의 삽입은 효율을 증가시킬 수 있었지만, 삽입된 $Alq_3$층에서의 발광 때문에 색순도 높은 적색발광을 얻지 못했다. OXD7층의 삽입은 정공을 블로킹하고 정공을 누적시킨다. 이는 전자와 정공의 재결합확률을 증가시키기 때문에 색순도 높은 적색발광을 유지하면서 휘도 특성과 발광효율이 향상되었다.

  • PDF

결정질 실리콘 태양전지의 이중 반사방지막 특성에 대한 연구 (Characteristics of Crystalline Silicon Solar Cells with Double Layer Antireflection Coating by PECVD)

  • 김진국;박제준;홍지화;김남수;강기환;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.243-247
    • /
    • 2012
  • The paper focuses on an anti-reflection (AR) coating deposited by PECVD in silicon solar cell fabrication. AR coating is effective to reduce the reflection of the light on the silicon wafer surface and then increase substantially the solar cell conversion efficiency. In this work, we carried out experiments to optimize double AR coating layer with silicon nitride and silicon oxide for the silicon solar cells. The p-type mono crystalline silicon wafers with $156{\times}156mm^2$ area, 0.5-3 ${\Omega}{\cdot}cm$ resistivity, and $200{\mu}m$ thickness were used. All wafers were textured in KOH solution, doped with $POCl_3$ and removed PSG before ARC process. The optimized thickness of each ARC layer was calculated by theoretical equation. For the double layer of AR coating, silicon nitride layer was deposited first using $SiH_4$ and $NH_3$, and then silicon oxide using $SiH_4$ and $N_2O$. As a result, reflectance of $SiO_2/SiN_x$ layer was lower than single $SiN_x$ and then it resulted in increase of short-circuit current and conversion efficiency. It indicates that the double AR coating layer is necessary to obtain the high efficiency solar cell with PECVD already used in commercial line.

  • PDF

초박형 태양전지 제작에 Porous Silicon Layer Transfer기술 적용을 위한 전기화학적 실리콘 에칭 조건 최적화에 관한 연구 (Optimization of Electrochemical Etching Parameters in Porous Silicon Layer Transfer Process for Thin Film Solar Cell)

  • 이주영;구연수;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제18권1호
    • /
    • pp.23-27
    • /
    • 2011
  • 전기화학적 에칭을 이용한 다공성 실리콘 이중층 형성은 초박형 태양전지 제작에서 PS layer transfer 기술을 적용하기 위한 선행 공정이다. 다공성 실리콘 층의 다공도는 전류밀도와 에칭용액 내 불산의 농도를 조절하여 제어할 수 있다. 전기화학적 에칭을 이용한 다공성 실리콘 형성을 위하여 비저항 $0.01-0.02\;{\Omega}{\cdot}cm$의 p-type (100)의 실리콘 웨이퍼를 사용하였으며, 에칭용액의 조성은 HF (40%) : $C_2H_5OH$(99 %) : $H_2O$ = 1 : 1 : 2 (volume)으로 고정하였다. PS layer transfer 기술에 사용되는 다공성 실리콘 이중층을 형성하기 위해서 에칭 도중 전류밀도를 낮은 전류밀도 조건에서 높은 전류밀도 조건으로 변환하여 low porosity layer 하부에 high porosity layer를 형성할 수 있다.

ZnO와 MnO2를 동시에 첨가한 (K0.5Na0.5)NbO3 세라믹스의 압전 특성에 대한 연구 (Piezoelectric Properties of Lead-Free (K0.5Na0.5)NbO3 Ceramics Added with ZnO and MnO2)

  • 홍영환;박영석;정광휘;조성열;이재신
    • 한국전기전자재료학회논문지
    • /
    • 제29권4호
    • /
    • pp.210-214
    • /
    • 2016
  • We investigated the sintering behavior and piezoelectric properties of lead-free $(K_{0.5}Na_{0.5})NbO_3$ ceramics co-doped with excess 0.01 mol ZnO and x mol $MnO_2$, where x was varied from 0 to 0.03. Excess $MnO_2$ addition was found to retard the grain growth and densification during sintering. However, 0.005 mol $MnO_2$ addition improved the piezoelectric properties of 0.01 mol ZnO added $(K_{0.5}Na_{0.5})NbO_3$ ceramics. The planar mode piezoelectric coupling coefficient, electromechanical quality factor, and piezoelectric constant $d_{33}$ of 0.01 mol ZnO and 0.005 mol $MnO_2$ added specimen were 0.40, 304, and 214 pC/N, respectively.

폴리실리콘 마이크로 액츄에이터의 열구동 특성분석 (Characterization of thermally driven polysilicon micro actuator)

  • 이창승;이재열;정회환;이종현;유형준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.2004-2006
    • /
    • 1996
  • A thermally driven polysilicon micro actuator has been fabricated using surface micromachining techniques. It consists of P-doped polysilicon as a structural layer and TEOS (tetracthylorthosilicate) as a sacrificial layer. The polysilicon was annealed for the relaxation of residual stress which is the main cause to its deformation such as bending and buckling. And the newly developed HF VPE (vapor phase etching) process was also used as an effective release method for the elimination of sacrificial TEOS layer. The thickneas of polysilicon is $2{\mu}m$ and the lengths of active and passive polysilicon cantilevers are $500{\mu}m$ and $260{\mu}m$, respectively. The actuation is incurred by die thermal expansion due to the current flow in the active polysilicon cantilever, which motion is amplified by lever mechanism. The moving distance of polysilicon micro actuator was experimentally conformed as large as $21{\mu}m$ at the input voltage level of 10V and 50Hz square wave. The actuating characteristics are investigated by simulating the phenomena of heat transfer and thermal expansion in the polysilicon layer. The displacement of actuator is analyzed to be proportional to the square of input voltage. These micro actuator technology can be utilized for the fabrication of MEMS (microelectromechanical system) such as micro relay, which requires large displacement or contact force but relatively slow response.

  • PDF