• 제목/요약/키워드: p-adic q-integrals

검색결과 5건 처리시간 0.015초

ON A q-ANALOGUE OF THE p-ADIC GENERALIZED TWISTED L-FUNCTIONS AND p-ADIC q-INTEGRALS

  • Lee, Chae-Jang
    • 대한수학회지
    • /
    • 제44권1호
    • /
    • pp.1-10
    • /
    • 2007
  • The purpose of this paper is to define generalized twisted q-Bernoulli numbers by using p-adic q-integrals. Furthermore, we construct a q-analogue of the p-adic generalized twisted L-functions which interpolate generalized twisted q-Bernoulli numbers. This is the generalization of Kim's h-extension of p-adic q-L-function which was constructed in [5] and is a partial answer for the open question which was remained in [3].

GREEN FUNCTIONS ON THE p-ADIC VECTOR SPACE

  • SON, JIN-Woo;RIM, KYUNG-SOO
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.657-669
    • /
    • 2005
  • Calculations of some integrals on the n-dimensional vector space over $\mathbb{Q}_p$ are useful in getting some other formulations of quantum mechanics and the field theory of p-adic mathematical physics. For reasons of these, we estimate several integrals. As an application, we derive some properties for the p-adic Green functions.

ON THE q-EXTENSION OF THE HARDY-LITTLEWOOD-TYPE MAXIMAL OPERATOR RELATED TO q-VOLKENBORN INTEGRAL IN THE p-ADIC INTEGER RING

  • Jang, Lee-Chae
    • 충청수학회지
    • /
    • 제23권2호
    • /
    • pp.207-213
    • /
    • 2010
  • In this paper, we define the q-extension of the Hardy-Littlewood-type maximal operator related to q-Volkenborn integral. By the meaning of the extension of q-Volkenborn integral, we obtain the boundedness of the q-extension of the Hardy-Littlewood-type maximal operator in the p-adic integer ring.

ON BERNOULLI NUMBERS

  • Kim, Min-Soo;Son, Jin-Woo
    • 대한수학회지
    • /
    • 제37권3호
    • /
    • pp.391-410
    • /
    • 2000
  • In the complex case, we construct a q-analogue of the Riemann zeta function q(s) and a q-analogue of the Dirichlet L-function L(s,X), which interpolate the 1-analogue Bernoulli numbers. Using the properties of p-adic integrals and measures, we show that Kummer type congruences for the q-analogue Bernoulli numbers are the generalizations of the usual Kummer congruences for the ordinary Bernoulli numbers. We also construct a q0analogue of the p-adic L-function Lp(s, X;q) which interpolates the q-analogue Bernoulli numbers at non positive integers.

  • PDF

THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS

  • Jang, Lee-Chae
    • 대한수학회보
    • /
    • 제47권6호
    • /
    • pp.1181-1188
    • /
    • 2010
  • q-Volkenborn integrals ([8]) and fermionic invariant q-integrals ([12]) are introduced by T. Kim. By using these integrals, Euler q-zeta functions are introduced by T. Kim ([18]). Then, by using the Euler q-zeta functions, S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin ([25]) studied q-Genocchi zeta functions. And also Y. H. Kim, W. Kim, and C. S. Ryoo ([7]) investigated twisted q-zeta functions and their applications. In this paper, we consider the q-analogue of twisted Lerch type Euler zeta functions defined by $${\varsigma}E,q,\varepsilon(s)=[2]q \sum\limits_{n=0}^\infty\frac{(-1)^n\epsilon^nq^{sn}}{[n]_q}$$ where 0 < q < 1, $\mathfrak{R}$(s) > 1, $\varepsilon{\in}T_p$, which are compared with Euler q-zeta functions in the reference ([18]). Furthermore, we give the q-extensions of the above twisted Lerch type Euler zeta functions at negative integers which interpolate twisted q-Euler polynomials.