• Title/Summary/Keyword: p-Type semiconductor

Search Result 420, Processing Time 0.029 seconds

Effect of ${Y_2}{O_3}$Buffer Layer on the Characteristics of Pt/$YMnO_3$/$Y_2$$O_3$/Si(MFIS) Structure (Pt/$YMnO_3$/$Y_2$$O_3$/Si(MFIS) 구조의 특성에 미치는 ${Y_2}{O_3}$층의 영향)

  • Yang, Jeong-Hwan;Sin, Ung-Cheol;Choe, Gyu-Jeong;Choe, Yeong-Sim;Yun, Sun-Gil
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.270-275
    • /
    • 2000
  • The Pt/YMnO$_3$/Y$_2$O$_3$/Si structure for metal/ferroelectric/insulator/semiconductor(MFIS)-FET was fabricated and effect of $Y_2$O$_3$layer on the properties of MFIS structure was investigated. The $Y_2$O$_3$ thin films on p-type Si(111) substrate deposited by Pulsed Laser Deposition were crystallized along (111) orientation irrespective of the deposition temperatures. Ferroelectric YMnO$_3$ thin films deposited directly on p-type Si (111) by MOCVD resulted in Mn deficient layer between Si and YMnO$_3$. However, YMnO$_3$ thin films having good quality and stoichiometric composition can be obtained by adopting $Y_2$O$_3$ buffer layer. The memory window of the $Y_2$O$_3$thin films with YMnO$_3$ film is greater than that of the YMnO$_3$ thin films without $Y_2$O$_3$ film after the annealing at 85$0^{\circ}C$ in vacuum ambient(100mtorr). The memory window is 1.3V at an applied voltage of 5V.

  • PDF

A stable solid state quantum dot sensitized solar cell with p-type CuSCN semiconductor and its dopping effect

  • Kim, Hui-Jin;Seol, Min-Su;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.378-378
    • /
    • 2011
  • 본 연구에서는 ZnO 나노선 기판을 제작하여 그 위에 밴드갭이 낮은 물질인 CdS, CdSe를 증착시킨 후 p-type 반도체 물질인 CuSCN을 증착시켜 안정성이 향상된 양자점 감응형 태양전지를 제작하였다. ZnO 나노선 기판은 투명한 FTO 기판 위에 ZnO를 진공증착시켜 seed layer를 제작하고 그 위에 $10{\mu}m$정도의 길이의 나노와이어를 성장시킨 후, 밴드갭이 낮은 CdS, CdSe 물질과의 다중접합을 이용하여 제작하고, 이러한 나노선 구조위에 chemical solution deposition을 이용하여 ${\beta}$-CuSCN을 형성시켰다. 양자점 감응형 태양전지는 ZnO 나노선을 photoanode로 이용하고 ZnO 나노선은 암모니아수와 아연염을 이용한, 비교적 저온의 수열합성법을 통해 합성하였고, sensitizer로 쓰인 CdS, CdSe 물질은 CBD방식을 통하여 합성된 나노선 위에 in-situ로 접합시켰다. 또한, 기존의 액체전해질을 이용한 양자점 감응형 태양전지의 안정성을 향상시키기 위해 p-type의 반도체 물질인 CuSCN물질을 propyl sulfide를 이용, ${\sim}80^{\circ}C$의 열을 가하여 in-situ 방식으로 다공성 구조에 효율적으로 접합이 가능하도록 deposition하였다. 일반적으로, CuSCN film은 홀 전도체로서의 장점을 지닌 반면, 전도성이 낮은 단점이 있기 때문에 이를 향상시키기 위해서 첨가제를 이용, 농도에 따라서 전도도가 향상되고 셀의 성능이 향상되는 것을 확인하였다. 이와 같이 합성된 구조는 주사전자현미경(SEM), X-선 회절(XRD), 솔라시뮬레이터 등의 분석장비를 이용하여 태양전지로서의 특성을 분석하였다. 또한 안정성 평가를 위하여 시간에 따른 셀의 특성변화도 비교하였다.

  • PDF

Thermoelectric Properties of P-type (Ce1-zYbz)0.8Fe4-xCoxSb12 Skutterudites

  • Choi, Deok-Yeong;Cha, Ye-Eun;Kim, Il-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.822-828
    • /
    • 2018
  • P-type Ce/Yb-filled skutterudites were synthesized, and their charge transport and thermoelectric properties were investigated with partial double filling and charge compensation. In the case of $(Ce_{1-z}Yb_z)_{0.8}Fe_4Sb_{12}$ without Co substitution, the marcasite ($FeSb_2$) phase formed alongside the skutterudite phase, but the generation of the marcasite phase was inhibited by increasing Co concentration. The electrical conductivity decreased with increasing temperature, exhibiting degenerate semiconductor behavior. The Hall and Seebeck coefficients were positive, which confirmed that the specimens were p-type semiconductors with holes as the major carriers. The carrier concentration decreased as the concentration of Ce and Co increased, which led to decreased electrical conductivity and increased Seebeck coefficient. The thermal conductivity decreased due to a reduction in electronic thermal conductivity via Co substitution, and due to decreased lattice thermal conductivity via double filling of Ce and Yb. $(Ce_{0.25}Yb_{0.75})_{0.8}Fe_{3.5}Co_{0.5}Sb_{12}$ exhibited the greatest dimensionless figure of merit (ZT = 0.66 at 823 K).

Generation of Si-O-C Bond without Si-$CH_3$ Bond in Hybrid Type SiOC Film

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.1-4
    • /
    • 2008
  • The chemical shift of SiOC film was observed according to the flow rate ratio. SiOC film had the broad main band of $880\sim1190cm^{-1}$ and the sharp Si-$CH_3$ bond at $1252cm^{-1}$, and the peak position of the main bond in the infrared spectra moved to high frequency according to the increasing of an BTMSM flow rate. So the increment of the alkyl group induced the C-H bond condensation in the film, and shows the blueshift in the infrared spectra. In the case of P5000 system of Applied Materials Corporation, the strong bond of Si-CH3 bond in precursor does not enough to dissociated and ionized, because low plasma energy due to the capactive coupled CVD. Therefore, there was the sharp peak of Si-$CH_3$ bond at $1252cm^{-1}$.

  • PDF

Preparation and Electronic Defect Characteristics of Pentacene Organic field Effect Transistors

  • Yang, Yong-Suk;Taehyoung Zyung
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.75-79
    • /
    • 2002
  • Organic materials have considerable attention as active semiconductors for device applications such as thin-film transistors (TFTs) and diodes. Pentacene is a p-type organic semiconducting material investigated for TFTs. In this paper, we reported the morphological and electrical characteristics of pentacene TFT films. The pentacene transistors showed the mobility of 0.8 $\textrm{cm}^2$/Vs and the grains larger than 1 ${\mu}{\textrm}{m}$. Deep-level transient spectroscopy (DLTS) measurements were carried out on metal/insulator/organic semiconductor structure devices that had a depletion region at the insulator/organic-semiconductor interface. The duration of the capacitance transient in DLTS signals was several ten of seconds in the pentacene, which was longer than that of inorganic semiconductors such as Si. Based on the DLTS characteristics, the energy levels of hole and electron traps for the pentacene films were approximately 0.24, 1.08, and 0.31 eV above Ev, and 0.69 eV below Ec.

Recent Development in Polymer Ferroelectric Field Effect Transistor Memory

  • Park, Youn-Jung;Jeong, Hee-June;Chang, Ji-Youn;Kang, Seok-Ju;Park, Cheol-Min
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.51-65
    • /
    • 2008
  • The article presents the recent research development in polymer ferroelectric non-volatile memory. A brief overview is given of the history of ferroelectric memory and device architectures based on inorganic ferroelectric materials. Particular emphasis is made on device elements such as metal/ferroelectric/metal type capacitor, metal-ferroelectric-insulator-semiconductor (MFIS) and ferroelectric field effect transistor (FeFET) with ferroelectric poly(vinylidene fluoride) (PVDF) and its copolymers with trifluoroethylene (TrFE). In addition, various material and process issues for realization of polymer ferroelectric non-volatile memory are discussed, including the control of crystal polymorphs, film thickness, crystallization and crystal orientation and the unconventional patterning techniques.

Development of a Paper Strain Gauge using Inkjet-printing Technology (잉크젯 인쇄기술을 이용한 종이 스트레인게이지 개발)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.23-27
    • /
    • 2015
  • In this paper, eco-friendly paper strain gauge was fabricated in the way of printing strain gauge on paper substrate, using PEDOT:PSS ink and inkjet printer technology. As a p-type conductive high polymer, PEDOT:PSS is known to be piezoresistive effect. I formed a strain gauge by connecting in parallel 5 lines of $60{\mu}m$ width printed with PEDOT:PSS. To minimize surrounding influence such as temperature, I formed wheat-stone bridge by combining 4 strain gauges (quarter-bridge strain gauge) which were made up of PEDOT:PSS 5 lines and measured. In quarter-bridge strain gauge, only two strain gauges, facing each other, arranged in strain and horizontal direction were deformed while the other two strain gauge of vertical direction were not. Therefore, quarter-bridge strain gauge showed the output of half bridge. The fabricated quarter-bridge strain gauge had output sensitivity of $105.6{\mu}V/V{\cdot}mm$ and its output linearity was relatively good.

Analysis of Crystallinity and Electrical Characteristics of Oxide Semiconductor of ZnO in Accordance with Annealing Methods (ZnO의 열처리방법에 따른 전기적인 특성의 변화와 결정성)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.242-247
    • /
    • 2017
  • ZnO film was prepared on a p-type Si wafer and then annealed at various temperatures in air and vacuum conditions to research the electrical properties and bonding structures during the annealing processes. ZnO film annealed in atmosphere formed a crystal structure owing to the suppression of oxygen vacancies: however, ZnO annealed in vacuum had an amorphous structure after annealing because of the increment of the content of oxygen vacancies. Schottky contact was observed for the ZnO annealed in an air. O 1s spectra with amorphous structure was found to have a value of 529 eV; that with a crystal structure was found to have a value of 531.5 eV. However, it was observed in these results that the correlation between the electronic characteristics and the bonding structures was weak.

Development of a Multi-template type Image Segmentation Algorithm for the Recognition of Semiconductor Wafer ID (반도체 웨이퍼 ID 인식을 위한 다중템플릿형 영상분할 알고리즘 개발)

  • Ahn, In-Mo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.4
    • /
    • pp.167-175
    • /
    • 2006
  • This paper presents a method to segment semiconductor wafer ID on poor quality images. The method is based on multiple templates and normalized gray-level correlation (NGC) method. If the lighting condition is not so good and hence, we can not control the image quality, target image to be inspected presents poor quality ID and it is not easy to identify and then recognize the ID characters. Conventional several method to segment the interesting ID regions fails on the bad quality images. In this paper, we propose a multiple template method, which uses combinational relation of multiple templates from model templates to match several characters of the inspection images. To find out the optimal solution of multiple template model in ID regions, we introduce newly-developed snake algorithm. Experimental results using images from real FA environment are presented.

Effect of temperature and oxygen partial pressure on the growth and development of Cu2O nanorods by radio frequency magnetron sputtering

  • You, Jae-Lok;Jo, Kwang-Min;Kim, Se-Yoon;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.102-103
    • /
    • 2013
  • As an important p-type semiconductor metal oxide with a narrow band gap (1.2 - 2.6eV), copper oxide (Cu2O) has been studied because of its various applications as material for heterogeneous catalysts, gas sensors, optical switch, lithium-ion electrode materials, field emission devices, solar cells. The fundamental properties of oxide-semiconductor can be greatly affected by the surface morphology, size, geometry and spatial orientation.

  • PDF