• Title/Summary/Keyword: p-LEACH

Search Result 48, Processing Time 0.023 seconds

Preparation of High Purity α-Alumina from Aluminum Black Dross by Redox Reaction (알루미늄 블랙 드로스로부터 산화 환원반응을 이용한 고순도 알파 알루미나의 제조)

  • Shin, Eui-Sup;An, Eung-Mo;Lee, Su-Jeong;Ohtsuki, Chikara;Kim, Yun-Jong;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.445-449
    • /
    • 2012
  • We investigate the effects of redox reaction on preparation of high purity ${\alpha}$-alumina from selectively ground aluminum dross. Preparation procedure of the ${\alpha}$-alumina from the aluminum dross has four steps: i) selective crushing and grinding, ii) leaching process, iii) redox reaction, and iv) precipitation reaction under controlled pH. Aluminum dross supplied from a smelter was ground to separate metallic aluminum. After the separation, the recovered particles were treated with hydrochloric acid(HCl) to leach aluminum as aluminum chloride solution. Then, the aluminum chloride solution was applied to a redox reaction with hydrogen peroxide($H_2O_2$). The pH value of the solution was controlled by addition of ammonia to obtain aluminum hydroxide and to remove other impurities. Then, the obtained aluminum hydroxide was dried at $60^{\circ}C$ and heat-treated at $1300^{\circ}C$ to form ${\alpha}$-alumina. Aluminum dross was found to contain a complex mixture of aluminum metal, aluminum oxide, aluminum nitride, and spinel compounds. Regardless of introduction of the redox reaction, both of the sintered products are composed mainly of ${\alpha}$-alumina. There were fewer impurities in the solution subject to the redox reaction than there were in the solution that was not subject to the redox reaction. The impurities were precipitated by pH control with ammonia solution, and then removed. We can obtain aluminum hydroxide with high purity through control of pH after the redox reaction. Thus, pH control brings a synthesis of ${\alpha}$-alumina with fewer impurities after the redox reaction. Consequently, high purity ${\alpha}$-alumina from aluminum dross can be fabricated through the process by redox reaction.

Inhibition of Growth and Microcystin Toxicity, and Characterization of Algicidal Substances from Lactobacillus graminis against Microcystis aeruginosa (Microcystis aeruginosa에 대한 Lactobacillus graminis의 성장 억제능, microcystin 분해 및 살조 물질의 특성)

  • Joo, Jae-Hyoung;Park, Bum Soo;Lee, Eun-Seon;Kang, Yoon-Ho;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.176-186
    • /
    • 2016
  • For several decades, lactic acid bacterium (Lactobacillus graminis: LAB) has been generally recognized as safe. To develop the pan-environmental bio-control agent, algicidal activity of the live LAB cell and its culture filtrate (CF) was examined against Microcystis aeruginosa. LAB cells perfectly lysed M. aeruginosa within 3 days, while the CF had a less effect than the live cells, approximately 78% inhibition of algal growth during a same culture period. The concentration of microcystin in alone culture of M. aeruginosa was $7.1{\mu}gL^{-1}$, but gradually increased and leach $158.5{\mu}gL^{-1}$ on 10 days. However, LAB cells clearly decreased the microcystin by $10.3{\mu}gL^{-1}$ in the same period, approximately 93.5%. CF of LAB showed a strong algicidal activity over 75% between pH 2-7, 91.3% by the treatment of proteinase K, 87.8% by below 3 kDa in particle size, and 75.3% by heat treatment, respectively. Of five solvents, fractions of CF passed through solvents diethyl ether and ethyl acetate showed an obvious algicidal activity in the algal-lawn test. Among 5 fractions purified by silica-gel TLC plate, two spots showed a most strong removal activity on M. aeruginosa. Another analysis of GC indicate that CF contained six representative fatty acids. Even though most of these substance have been known as an anti-algal substance against M. aeruginosa, oleic acid is the most effective. These results suggested that the culture filtrate or specific substances, like a fatty acids, in comparison with live L. graminis can be a successful and eco-friendly agent to control Microcystis bloom.

Physicochemical Properties of Artificial Soil Formulated by Blending Calcined Clay and Coconut Peat and its Effect on Plant Growth (소성 점토다공체 및 코코넛 피트를 혼합한 인공토양의 물리화학적 특성과 식물생육에 미치는 영향)

  • 허근영;강호철;김인혜;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.5
    • /
    • pp.107-115
    • /
    • 2002
  • This study was carried out to compare artificial soil formulated by blending calcined clay and coconut peat with perlite, then to evaluate this soil as a perlite substitute for use as an artificial planting medium. To achieve this, a determination of the physico-chemical properties and it's effect on plant growth were conducted by comparing those with large perlite grains and small grains. The results are summarized as follows: 1) The bulk density was 0.41g/㎤. This density was lower than that of field soil, but higher than that of large perlite grain(0.23g/㎤) and small grain(0.25g/㎤). The porosity, field capacity, and saturated hydraulic conductivity were 71.3%, 49.2%, and 3.8$\times$10-2cm/s, respectively. The air-permeability, water holding capacity, and drainage were better than or equal to that both large and small perlite grain. 2) It was near-neutral in reaction(pH=6.6). It had a high organic carbon content(65.8g/kg) and a low available phosphoric acid content(84.7mg/kg). It was similar to crop soil in cation exchange capacity(11.4cmol/kg). It had a low exchangeable calcium content(0.71cmol/kg), a low exchangeable magnesium content(0.68cmol/kg), a high exchangeable potassium content(2.54cmol/kg), and a high exchangeable sodium content(1.12cmol/kg). Except for the exchangeable potassium and sodium content, the chemical properties were better than or equal to both large and small grain perlite. The excessive exchangeable potassium or sodium content will inhibit plant growth. 3) In Experiment 1, the plant growth tended to be higher compared to that of large and small perlite gains. But in Experiment 2, it tended to be lower. This might be linked to the excessive exchangeable potassium or sodium content. 4) It could be considered as a renewable perlite substitute for greening of artificial soil. But, it would be necessary to leach the excessive exchangeable potassium or sodium to avoid the risk of inhibiting plant growth.

Investigating the Leaching Rate of TiTe3O8 Towards a Potential Ceramic Solid Waste Form

  • Noh, Hye Ran;Lee, Dong Woo;Suh, Kyungwon;Lee, Jeongmook;Kim, Tae-Hyeong;Bae, Sang-Eun;Kim, Jong-Yun;Lim, Sang Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.509-516
    • /
    • 2020
  • An important property of glass and ceramic solid waste forms is processability. Tellurite materials with low melting temperatures and high halite solubilities have potential as solid waste forms. Crystalline TiTe3O8 was synthesized through a solid-state reaction between stoichiometric amounts of TiO2 and TeO2 powder. The resultant TiTe3O8 crystal had a three-dimensional (3D) structure consisting of TiO6 octahedra and asymmetric TeO4 seesaw moiety groups. The melting temperature of the TiTe3O8 powder was 820℃, and the constituent TeO2 began to evaporate selectively from TiTe3O8 above around 840℃. The leaching rate, as determined using the modified American Society of Testing and Materials static leach test method, of Ti in the TiTe3O8 crystal was less than the order of 10-4 g·m-2·d-1 at 90℃ for durations of 14 d over a pH range of 2-12. The chemical durability of the TiTe3O8 crystal, even under highly acidic and alkaline conditions, was comparable to that of other well-known Ti-based solid waste forms.

Mineralogical studies and extraction of some valuable elements from sulfide deposits of Abu Gurdi area, South Eastern Desert, Egypt

  • Ibrahim A. Salem;Gaafar A. El Bahariya;Bothina T. El Dosuky;Eman F. Refaey;Ahmed H. Ibrahim;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • Abu Gurdi area is located in the South-eastern Desert of Egypt which considered as volcanic massive sulfide deposits (VMS). The present work aims at investigating the ore mineralogy of Abu Gurdi region in addition to the effectiveness of the hydrometallurgical route for processing these ores using alkaline leaching for the extraction of Zn, Cu, and Pb in the presence of hydrogen peroxide, has been investigated. The factors affecting the efficiency of the alkaline leaching of the used ore including the reagent composition, reagent concentration, leaching temperature, leaching time, and Solid /Liquid ratio, have been investigated. It was noted that the sulfide mineralization consists mainly of chalcopyrite, sphalerite, pyrite, galena and bornite. Gold is detected as rare, disseminated crystals within the gangue minerals. Under supergene conditions, secondary copper minerals (covellite, malachite, chrysocolla and atacamite) were formed. The maximum dissolution efficiencies of Cu, Zn, and Pb at the optimum leaching conditions i.e., 250 g/L NaCO3 - NaHCO3 alkali concentration, for 3 hr., at 250 ℃, and 1/5 Solid/liquid (S/L) ratio, were 99.48 %, 96.70 % and 99.11 %, respectively. An apparent activation energy for Zn, Cu and Pb dissolution were 21.599, 21.779 and 23.761 kJ.mol-1, respectively, which were between those of a typical diffusion-controlled process and a chemical reaction-controlled process. Hence, the diffusion of the solid product layer contributed more than the chemical reaction to control the rate of the leaching process. High pure Cu(OH)2, Pb(OH)2, and ZnCl2 were obtained from the finally obtained leach liquor at the optimum leaching conditions by precipitation at different pH. Finally, highly pure Au metal was separated from the mineralized massive sulfide via using adsorption method.

Environmental Fate and Effect of ZnO Nanoparticles (산화아연 나노입자의 환경 거동 및 영향 연구)

  • Ha, Ji Yeon;Jang, Min Hee;Hwang, Yu Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.418-425
    • /
    • 2017
  • ZnO nanoparticles (ZnO NPs) are mainly used in semiconductors, solar cells, biosensors, and cosmetics (sunscreen). In this study, we investigated the behavior of ZnO NPs in aquatic and soil environments and their effects on plants (Artemisia annua L.) in hydroponic cultivation. It was confirmed that the ZnO NPs size increased and their dissolution decreased with increasing in pH. Leaching distance of ZnO NPs was less than 2.5 cm, indicating that ZnO NPs had a little potential to leach into deeper soil layers. When ZnO NPs were exposed to plant, the total weights of plants decreased. The effects on the length of root and shoot were not observed. In addition large amount of ZnO NPs were adsorbed on the surface of plant root and didn't translocate into shoot. These results suggest that ZnO NPs block the pores of the root cell wall and decrease the bioavailability of plant nutrients. Therefore it can be speculated that the particles increase in size and settle down in the water environment and may adversely affect the plant growth by firmly adhering to the root surface when the ZnO NPs are exposed to the environment.

The Effects of Carbonate Minerals in Gully-pot Sediment on the Leaching Behavior of Heavy Metals Under Acidified Environment (우수관퇴적물에 함유된 탄산염광물이 산성환경에서의 중금속 용출거동에 미치는 영향 평가)

  • 이평구;유연희
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.257-271
    • /
    • 2002
  • One of the main interests in relation to heavily contaminated gully-pot sediment in urban area is the short term mobility of heavy metals, which depends on the pH of acidic rainwater and on the buffering effects of carbonate minerals. The buffering effects of carbonates are determined by titration (acid addition). Leaching experiments are carried out in solutions with variable initial HN03 contents for 24h. The gully-pot sediment appears to be predominantly buffered by calcite and dolomite. In case of sediment samples, which highly contain carbonates, pH decreases more slowly with increasing acidity. On the other hand, for the sediment samples, which less contain carbonate minerals, pH rapidly drops until it reaches about 2 then it decreases slowly. The leaching reactions are delayed until more acid is added to compensate for the buffering effects of carbonates. The Zn, Cu, Pb and Mn concentrations of leachate rapidly increase with decreased pH, while Cd, Co, Ni, Cr and Fe dissolutions are very slow and limited. The solubility of heavy metals depends not only on thc pH values of leachatc but also on the speciation in which metals are associated with sediment particles. In slightly to moderately acid conditions, Zn, Cd, Co, Ni and Cu dissolutions become increasingly important. As deduced from leaching runs, the relative mobility of heavy metals at pH of 5 is found to be: Zn > Cd > Co > Ni > Cu » Pb > Cr, suggesting that moderately acid rainwater leach Zn, Cd, Co, Ni and Cu from thc contaminated gully-pot sediment, while Pb and Cr would remain fixed. The buffering effects of Ca- and Mg-carbonates play an important role in delaying as well as limiting the leaching reactions of heavy metals from highly contaminated gully-pot sediment. The extent of such a secondary environmental pollution will thus depends on how well the metals in sediment can be leached by somewhat acidic rain water. Changes in the physicochemical environments may result in the severe environmental pollution of heavy metals. These results are to be taken into account in the management of contaminated sediments during rainstorms.

Effects of Fly Ash on Heavy Metal Contents in Percolated Water of Paddy Soil (석탄회 시용이 논 토양수중의 중금속성분 용출에 미치는 영향)

  • Kim, Yong Woong;Yoon, Chung Han;Shin, Bang Sup;Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.236-242
    • /
    • 1996
  • This study was conducted to investigate the changes of heavy metals in percolated water of paddy soil in which rice was cultivated in conditions of 0%, 5%. 30% addition of bituminous and anthracite fly ash respectively. In cultivated plot, the contents of Fe in percolated water increased gradually during the cultivation. But there was no sharp difference of Fe contents in fly ash treated plots. The contents of Mn in percolated water increased gradually during the cultivation and was high in the cultivated plot. But difference in the contents of Mn among plots not clear. The contents of Zn in percolated water was highest during 20-25 days in the cultivation, thereafter decreased gradually. The fly ash did not cause to increase the contents of Zn in percolated water. The contents of Cu in percolated water decreased through the cultivation. Fly ash treatment did not cause to increase the contents of Cu in percolated water. The contents of Pb in percolated water decreased gradually over the cultivation. Fly ash treatment did not largely influence to Pb percolation. In mid-July. Pb did not almost appeared in percolated water. The contents of Cd was highest about 15 days of the transplant, thereafter decreased gradually. After 40 day of the cultivation, leach of Cd stopped. When fly ashes were applied in paddy soil, the contents of heavy metals in percolated water was not so much compared with control plot. It seems that originally low contents of heavy metals in fly ash and decrease in solubility of heavy metals in a relatively high soil pH make it possible to use fly ash as a soil conditioner.

  • PDF

Effects of Artificially Acidified Soils on the Growth and Nutrient Status of Pinus densiflora and Quercus acutissima Seedlings (토양산성화가 소나무, 상수리나무 묘목의 생장 및 영양상태에 미치는 영향)

  • Jin, Hyun-O;Bang, Sun-Hee;Lee, Choong-Hwa;Kim, Se-young
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.3
    • /
    • pp.266-273
    • /
    • 2008
  • The effects of soil acidification on the seedling growth and nutrition of Pinus densiflora and Quercus acutissima were investigated. The relationship between the seedling growth and molar (Ca+Mg+K)/Al ratio of in soil solution was examined. The results suggested that growth inhibition of seedling Pinus densiflora and Quercus acutissima was due to the low pH of soil solution, which was followed by leach of Al into soil solution, and decrease of essential elements, such as Ca in aerial pant of the seeding caused by the increase of Al concentration in subterranean pant of the seedlings. The level of growth inhibition was determined not only by Al concentration, but also by the balance of inorganic elements, Al, Ca, Mg and K. The growths of two species in total dry weight were clearly inhibited when molar (Ca+Mg+K)/Al ratio of the soil was lower than 6.0. The growth in dry weight, in the condition of the molar ratio was 0.8, was decreased 60% or 50% for the seedling of Pinus densiflora or Quercus acutissima respectively. It was concluded that the molar (Ca+Mg+K)/ Al ratio could be an important index for evaluation of the effects of soil acidification, due to acid deposition such as acid rain, on growth of trees and nutrition. And it might be a more useful indicator for evaluation of critical load of acid deposition on forest ecosystems.

The Bioleaching of Sphalerite by Moderately Thermophilic Bacteria (고온성 박테리아를 이용한 섬아연석의 용출 특성)

  • Park, Cbeon-Young;Cheong, Kyung-Hoon;Kim, Bong-Ju
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.573-587
    • /
    • 2010
  • Bioleaching experiments were effectively carried out at $42^{\circ}C$, $52^{\circ}C$ and $62^{\circ}C$ to leach the more valuable metal ions from sphalerite using bacteria. The pH values of the bioleaching solution were constantly maintained for 10 days in the range of 2.40 to 2.55. In these bioleaching experiments, rod-shaped bacteria attached to the sphalerite surface were continuously observed in the sample. Along with the increase in the leaching temperatures, the concentration of Zn and Pb increased in the control sample of leachates, whereas the concentration of Fe increased in the sample containing bacteria. At $42^{\circ}C$, $52^{\circ}C$ and $62^{\circ}C$ the biological leaching content of Zn was found to be 9.5, 2.8 and 2.9 times higher than that in the chemical leaching content, respectively. At these temperatures, the content of Pb in the bacterial sample of the leachate was detected to be 14.8, 7.4 and 3.8 times higher than that of the control sample of the leachate, respectively.