Effects of Artificially Acidified Soils on the Growth and Nutrient Status of Pinus densiflora and Quercus acutissima Seedlings

토양산성화가 소나무, 상수리나무 묘목의 생장 및 영양상태에 미치는 영향

  • Jin, Hyun-O (College of Life Science, Kyunghee University) ;
  • Bang, Sun-Hee (College of Life Science, Kyunghee University) ;
  • Lee, Choong-Hwa (Department of Forest Environment, Korea Forest Research Institute) ;
  • Kim, Se-young (College of Life Science, Kyunghee University)
  • 진현오 (경희대학교 생명과학대학) ;
  • 방선희 (경희대학교 생명과학대학) ;
  • 이충화 (국립산림과학원 산림환경부) ;
  • 김세영 (경희대학교 생명과학대학)
  • Received : 2008.03.24
  • Accepted : 2008.04.23
  • Published : 2008.06.29

Abstract

The effects of soil acidification on the seedling growth and nutrition of Pinus densiflora and Quercus acutissima were investigated. The relationship between the seedling growth and molar (Ca+Mg+K)/Al ratio of in soil solution was examined. The results suggested that growth inhibition of seedling Pinus densiflora and Quercus acutissima was due to the low pH of soil solution, which was followed by leach of Al into soil solution, and decrease of essential elements, such as Ca in aerial pant of the seeding caused by the increase of Al concentration in subterranean pant of the seedlings. The level of growth inhibition was determined not only by Al concentration, but also by the balance of inorganic elements, Al, Ca, Mg and K. The growths of two species in total dry weight were clearly inhibited when molar (Ca+Mg+K)/Al ratio of the soil was lower than 6.0. The growth in dry weight, in the condition of the molar ratio was 0.8, was decreased 60% or 50% for the seedling of Pinus densiflora or Quercus acutissima respectively. It was concluded that the molar (Ca+Mg+K)/ Al ratio could be an important index for evaluation of the effects of soil acidification, due to acid deposition such as acid rain, on growth of trees and nutrition. And it might be a more useful indicator for evaluation of critical load of acid deposition on forest ecosystems.

소나무, 상수리나무 묘목의 생장 및 영양상태에 미치는 토양산성화의 영향을 조사하고 묘목의 생장과 토양용액 중의 (Ca+Mg+K)/Al 몰비와의 관계를 검토하였다. 인위적으로 산성화 시킨 산림토양에서 생육한 소나무, 상수리나무 묘목의 생장저해에는 토양용액 중의 pH 저하와 이에 따른 토양용액으로의 Al 용출 및 묘목의 지하부에 있어서 Al 농도의 증가에 따른 지상부의 Ca 등의 식물 필수원소의 감소 등이 관여하고 있음을 시사하였다. 토양산성화에 따른 묘목의 생장저하 수준은 토양의 Al 농도뿐만 아니라 Al과 Ca, Mg 및 K과의 무기영양소 균형도에 의해 결정되며, 두 수종 모두 토양용액 중의 (Ca+Mg+K)/Al 몰비가 6.0 이하가 되면 건물생장이 현저하게 저하하고 그 비가 0.8인 경우 건물생장이 대조구 값에 비하여 소나무 묘목에서 약 60%, 상수리나무 묘목에서 약 50% 저하하였다. 앞으로, 산성우 등의 산성강하물에 의한 토양산성화가 수목의 생장 및 영양상태에 미치는 영향을 평가할 경우, 토양용액 중의 (Ca+Mg+K)/Al 몰비는 삼림생태계 피해예측에 대한 산성강하물의 한계부하량의 평가에 있어 중요한 지표가 될 수 있다고 판단된다.

Keywords

Acknowledgement

Supported by : 경희대학교

References

  1. 이경재, 조우, 한봉호. 1996. 서울 도시생태계 현황과 회복대책(I)-산림지역 식물군집구조-. 한국환경생태학회지 10(1): 113-127
  2. 이승우, 박관수. 2001. 산림토양의 산성화 민감도에 대 한 실험적 평가(I)-산중화 반응 예측모형의 활용-. 한국임학회지 90(1): 133-138
  3. 이종식, 이규승. 2000. 우리나라 강우의 산성도 중화에 대한 $NH_4^+$$Ca^{2+}$의 영향. 한국환경농학회지 19(1): 72-74
  4. 이총규, 황진형, 김종갑. 2004. 산성강우에 의한 수목의 쇠퇴현상(I)-음이온을 중심으로-. 한국생태학회지 27(6): 347-353
  5. 이충화, 유정환, 김영걸, 변재경, 김춘식, 이승우, 이봉수. 1999. 토양산성화가 소나무 묘목의 생장에 미치는 영향. 산림과학논문집 61: 90-96
  6. 전영신, 조하만, 권원태. 1994. 한반도 중부지방에서 관 측된 1992-1993년 산성비의 특성과 공기 이동 경로 분 석. 대기보전학회지 10(3): 175-182
  7. 조희두. 1999. 광주지역에서 주요 수목의 대기오염물질 과 중금속 흡수 정화기능에 관한 연구. 한국임학회지 88(4): 510-522
  8. 환경부. 2002. 환경통계연감 제 15호. 환경부. 서울. pp. 140-203
  9. 吉田 稔, 川畑洋子. 1988. 酸性雨の土による中和機構. 日本土肥料誌 59: 413-415
  10. 鈴木 淸. 1992. 神奈川大山のモミ林枯損緯とその周地域 の年輪幅の化. 神奈川林業試場報告 19: 23-42
  11. 北尾光俊, 田淵隆一, 藤村好子, 小池孝良. 1993. マンガ ン過剩がシラカンバ苗木の成長に及ぼす影響. 日本學會北海道論集 41: 214-216
  12. 三輪 誠, 伊豆田 猛, 戶塚 績. 1994. 母材が異なる3種類 の土壤の酸性化がスギ苗の成長に及ぼす影響. 大氣汚染學會誌 29: 254-263
  13. 三宅 博, 龜井信一, 伊豆田 猛, 戶塚 績. 1991. 水耕栽培 におけるスギ苗の成長に對するアルミニウムの影響. 人間と環境 17: 10-16
  14. Abrahamsen, G. 1984. Effect of acidic deposition on forest soil and vegetation. Philosophical Transactions of the Royal Society London B305: 369-382
  15. Akimoto, H. and Narita, H. 1994. Distribution of $SO_2$, $NO_X$ and $CO_2$ emitions from fuel combustion and industrial activities in Asia with $1^o\;{\times}\; 1^o$ resolution. Atmospheric Environment 28: 213-225 https://doi.org/10.1016/1352-2310(94)90096-5
  16. Arovaara, H. and Ilesniemi, H. 1990. Effect of soluble inorganic aluminum on the growth and nutrient concentrations of Pinus sylvestris and Picea abies seedlings. Scandinavian Journal of Forest Research 5: 49-57 https://doi.org/10.1080/02827589009382592
  17. Brodin, Y-W. and Kuylenstierna, J.C.I. 1992. Acidification and critical loads in Nordic countries: A background. AMBIO 21: 332-338
  18. Burns, R.M. and Honkala, B.H. 1990. Silvics of North America: 1. Conifers. Agriculture Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC. Vol. 1. pp. 456-462
  19. Cronan, C.S. and Grigai, D.F. 1995. Use of calcium/aluminum ratio as indicators of stress in forest ecosystem. Journal of Environmental Quality 24: 209-226 https://doi.org/10.2134/jeq1995.00472425002400020002x
  20. Goransson, A. and Eldhuset, T.D. 1991. Effect of aluminum on growth and nutrient uptake of small Picea abies and Pinus sylvestris plant. Trees 5: 136-142
  21. Hunt, R. 1978. Plant Growth Analysis. Edward Arnold Publishers Ltd. pp. 8-25
  22. Izuta, T., Noguchi, K., Aoki, M. and Totsuka, T. 1995. Effects of excess manganese on growth, water content and nutrient status of Japanese cedar seedlings. Environmental Science 3: 209-220 https://doi.org/10.1021/es60026a604
  23. Izuta, T. and Totsuka, T. 1996. Effect of soil acidification on growth of Cryptomeria japonica seedlings. Proceedings of the International Symposium on Acidic Deposition and its Impacts (Tsukuba, Japan) pp.157-164
  24. Kim, G.T. 1987. Effects of simulated acid rain on growth and physiological characteristics of Ginkgo biloba L. seedlings and on chemical properties of the tested soil. Journal of Korean Forestry Society 76(3): 230-240
  25. Kitao, M., Lei, T.T. and Koike, T. 1997. Comparison of photosynthetic responses to manganese toxicity of deciduous broad-leaved trees in northern Japan. Environmental Pollution 97: 113-118 https://doi.org/10.1016/S0269-7491(97)00064-X
  26. Krause, G.H.M., Arndt, U., Brandt, G.J., Bucher, J., Kent, G. and Matzner, E. 1986. Forest decline in Europe: Development and possible causes. Water, Air and Soil Pollution 31: 647-668 https://doi.org/10.1007/BF00284218
  27. Larcher, W. 1995. Physiological Plants Ecology 3rd ed.: Springer-Verlag Berlin 506pp
  28. Lee, C.H., Lee, S.W., Kim, Y.K. and Cho, J.H. 2003. Atmospheric quality, soil acidification and tree dicline in three Korean red pine forest. Korean Journal of Ecology 26(2): 87-89 https://doi.org/10.5141/JEFB.2003.26.2.087
  29. Mohnen, V.A. 1988. The challenge of acid rain. Scientific American 259: 14-22
  30. Rengel, Z. 1992. Role of calcium in aluminum toxicity. New Phytologist 121: 499-513 https://doi.org/10.1111/j.1469-8137.1992.tb01120.x
  31. Schaedle, M., Thornton, F.C., Raynal, D.J. and Tepper, H.B. 1989. Response of tree seedlings to aluminum. Tree Physiology 5: 337-356 https://doi.org/10.1093/treephys/5.3.337
  32. Sverdrup, H., Warfvinge, P. and Nihlgrd, B. 1994. Assessment of soil acidification on forest growth in Sweden. Water, Air and Soil Pollution 78: 1-36 https://doi.org/10.1007/BF00475665
  33. Totsuka, T. 1993. Present situation of forest decline by acid rain in China and Korea. Journal of Environmental Research 29: 15-18
  34. Ulrich, B., Mayer, R. and Khanna, P.K. 1980. Chemical changes due to acid precipitation in a Loess-derived soil in central Europe. Soil Science 130: 193-199 https://doi.org/10.1097/00010694-198010000-00005