• Title/Summary/Keyword: ozone trend

Search Result 61, Processing Time 0.02 seconds

Updated Trends of Stratospheric Ozone over Seoul (서울 상공의 최신 성층권 오전 변화 경향)

  • Kim, Jhoon;Cho, Hi-Ku;Lee, Yun-Gon;Oh, Sung Nam;Baek, Seon-Kyun
    • Atmosphere
    • /
    • v.15 no.2
    • /
    • pp.101-118
    • /
    • 2005
  • Atmospheric ozone changes temporally and spatially according to both anthropogenic and natural causes. It is essential to quantify the natural contributions to total ozone variations for the estimation of trend caused by anthropogenic processes. The aims of this study are to understand the intrinsic natural variability of long-term total ozone changes and to estimate more reliable ozone trend caused by anthropogenic ozone-depleting materials. For doing that, long-term time series for Seoul of monthly total ozone which were measured from both ground-based Dobson Spectrophotometer (Beck #124)(1985-2004) and satellite TOMS (1979-1984) are analyzed for selected period, after dividing the whole period (1979~2004) into two periods; the former period (1979~1991) and the latter period (1992~2004). In this study, ozone trends for the time series are calculated using multiple regression models with explanatory natural oscillations for the Arctic Oscillation(AO), North Atlantic Oscillation(NAO), North Pacific Oscillation(NPO), Pacific Decadal Oscillation(PDO), Quasi Biennial Oscillation(QBO), Southern Oscillation(SO), and Solar Cycle(SC) including tropopause pressure(TROPP). Using the developed models, more reliable anthropogenic ozone trend is estimated than previous studies that considered only QBO and SC as natural oscillations (eg; WMO, 1999). The quasi-anthropogenic ozone trend in Seoul is estimated to -0.12 %/decade during the whole period, -2.39 %/decade during the former period, and +0.10 %/decade during the latter period, respectively. Consequently, the net forcing mechanism of the natural oscillations on the ozone variability might be noticeably different in two time intervals with positive forcing for the former period (1979-1991) and negative forcing for the latter period (1992-2004). These results are also found to be consistent with those analyzed from the data observed at ground stations (Sapporo, Tateno) of Japan. In addition, the recent trend analyses for Seoul show positive change-in-trend estimates of +0.75 %/decade since 1997 relative to negative trend of -1.49 %/decade existing prior to 1997, showing -0.74 %/decade for the recent 8-year period since 1997. Also, additional supporting evidence for a slowdown in ozone depletion in the upper stratosphere has been obtained by Newchurch et al.(2003).

Modeling of High Density of Ozone in Seoul Area with Non-Linear Regression (비선형 회귀 모형을 이용한 서울지역 오존의 고농도 현상의 모형화)

  • Chung, Soo-Yeon;Cho, Ki-Heon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.865-877
    • /
    • 2009
  • While characterized initially as an urban-scale pollutant, ozone has increasingly been recognized as a regional and even global-scale phenomenon. The complexity of environmental data dynamics often requires models covering non-linearity. This study deals with modeling ozone with meteorology in Seoul area. The relationships are used to construct a nonlinear regression model relating ozone to meteorology. The model can be used to estimate that part of the trend in ozone levels that cannot be accounted for by trends in meteorology.

The Variations of Stratospheric Ozone over the Korean Peninsula 1985~2009 (한반도 상공의 오존층 변화 1985~2009)

  • Park, Sang Seo;Kim, Jhoon;Cho, Nayeong;Lee, Yun Gon;Cho, Hi Ku
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.349-359
    • /
    • 2011
  • The climatology in stratospheric ozone over the Korean Peninsula, presented in previous studies (e.g., Cho et al., 2003; Kim et al., 2005), is updated by using daily and monthly data from satellite and ground-based data through December 2009. In addition, long-term satellite data [Total Ozone Mapping Spectrometer (TOMS), Ozone Monitoring Instrument (OMI), 1979~2009] have been also analyzed in order to deduce the spatial distributions and temporal variations of the global total ozone. The global average of total ozone (1979~2009) is 298 DU which shows a minimum of about 244 DU in equatorial latitudes and increases poleward in both hemispheres to a maximum of about 391 DU in Okhotsk region. The recent period, from 2006 to 2009, shows reduction in total ozone by 6% relative to the values for the pre-1980s (1979~1982). The long-term trends were estimated by using a multiple linear regression model (e.g., WMO, 1999; Cho et al., 2003) including explanatory variables for the seasonal variation, Quasi-Biennial Oscillation (QBO) and solar cycle over three different time intervals: a whole interval from 1979 to 2009, the former interval from 1979 to 1992, and the later interval from 1993 to 2009 with a turnaround point of deep minimum in 1993 is related to the effect of Mt. Pinatubo eruption. The global trend shows -0.93% $decade^{-1}$ for the whole interval, whereas the former and the later interval trends amount to -2.59% $decade^{-1}$ and +0.95% $decade^{-1}$, respectively. Therefore, the long-term total ozone variations indicate that there are positive trends showing a recovery sign of the ozone layer in both North/South hemispheres since around 1993. Annual mean total ozone (1985~2009) is distributed from 298 DU for Jeju ($33.52^{\circ}N$) to 352 DU for Unggi ($42.32^{\circ}N$) in almost zonally symmetric pattern over the Korean Peninsula, with the latitudinal gradient of 6 DU $degree^{-1}$. It is apparent that seasonal variability of total ozone increases from Jeju toward Unggi. The annual mean total ozone for Seoul shows 323 DU, with the maximum of 359 DU in March and the minimum of 291 DU in October. It is found that the day to day variability in total ozone exhibits annual mean of 5.7% in increase and -5.2% in decrease. The variability as large as 38.4% in increase and 30.3% in decrease has been observed, respectively. The long-term trend analysis (e.g., WMO, 1999) of monthly total ozone data (1985~2009) merged by satellite and ground-based measurements over the Korean Peninsula shows increase of 1.27% $decade^{-1}$ to 0.80% $decade^{-1}$ from Jeju to Unggi, respectively, showing systematic decrease of the trend magnitude with latitude. This study also presents a new analysis of ozone density and trends in the vertical distribution of ozone for Seoul with data up to the end of 2009. The mean vertical distributions of ozone show that the maximum value of the ozone density is 16.5 DU $km^{-1}$ in the middle stratospheric layer between 24 km and 28 km. About 90.0% and 71.5% of total ozone are found in the troposphere and in the stratosphere between 15 and 33 km, respectively. The trend analysis reconfirms the previous results of significant positive ozone trend, of up to 5% $decade^{-1}$, in the troposphere and the lower stratosphere (0~24 km), with negative trend, of up to -5% $decade^{-1}$, in the stratosphere (24~38 km). In addition, the Umkehr data show a positive trend of about 3% $decade^{-1}$ in the upper stratosphere (38~48 km).

Monitoring and Long-term Trend of Total Column Ozone from Dobson Spectrophotometer in Seoul (1985~2017) (돕슨 분광광도계를 이용한 서울 상공의 오존층 감시 및 장기변화 경향(1985~2017))

  • Park, Sang Seo;Cho, Hi Ku;Koo, Ja-Ho;Lim, Hyunkwang;Lee, Hana;Kim, Jhoon;Lee, Yun Gon
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.13-20
    • /
    • 2019
  • Since 1985, the Dobson Spectrophotometer has been operated at Yonsei University, and this instrument has monitored the daily representative total ozone in Seoul. Climatological value for total ozone in Seoul is updated by using the daily representative observation data from 1985 to 2017. After updating the daily representative total ozone data, seasonal and inter-annual variation of total ozone in Seoul is also estimated after calculating inter-comparison between ground (Dobson Spectrophotometer) and satellite [Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI)] observations. The global average of total ozone measured by satellite is 297 DU, and its recent amount is about 3.5% lower than the global amount in 1980s. In Seoul, daily representative total ozone is ranged from 225 DU to 518 DU with longterm mean value of 324.3 DU. In addition, monthly mean total ozone is estimated from 290 DU (October) to 362 DU (March), and yearly average of total ozone have been continuously increased since 1985. For the long-term trend of total ozone in Seoul, this study is considered the seasonal variation, Solar Cycle, and Quasi-Biennial Oscillation. In addition to the natural oscillation effect, this study also considered to the long-term variation of sudden increase of total ozone due to the secondary ozone peak. By considering these natural effects, the long-term total ozone trends from 1985 to 2017 are estimated to be 1.11~1.46%/decade.

The Long Term Trends of Tropospheric Ozone in Major Regions in Korea

  • Shin, Hye Jung;Park, Ji Hoon;Park, Jong Sung;Song, In Ho;Park, Seung Myung;Roh, Soon A;Son, Jung Seok;Hong, You Deog
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.235-253
    • /
    • 2017
  • This study was conducted for analyzing the contribution factors on ozone concentrations and its long term trends in each major city and province in Korea through several statistical methods such as simple linear regression, generalized linear model, KZ-filer, correlation matrix, Kringing method, and cluster analysis. The overall ozone levels in South Korea have been consistently increasing over the past 10 years. The ozone concentrations in Seoul, the biggest city in Korea, are the lowest in all areas with the highest increasing ratio for $95^{th}%$ ozone. It is thought that the active photochemical reaction could affect the higher ozone concentration increase. On the other hand, the ozone concentrations in Jeju are the highest in Korea with the highest increasing ratio for $5^{th}%$, $33^{th}%$, and $50^{th}%$ ozone. It is also thought that the weak $NO_x$ titration could be the reason of higher ozone concentrations in Jeju. In case of Jeju, transport related factors is the major factor affecting the ozone trend. Thus, it is assumed that the variation of ozone trend of Asian region affecting the ozone trend in Jeju, where domestic ozone photochemical reaction is less active than urban area. It is thought that the photochemical reaction plays the role of increasing of ozone concentrations in the urban area, even though the LRT affected on the increase of ozone concentrations in non-urban area.

Characterization of Ozone Distributions in Pohang: Measurement Data during 2002~2006 (포항지역 오존농도의 분포 특성: 2002~2006년 측정자료)

  • Lim, Ho-Jin;Lee, Yong-Jik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.50-62
    • /
    • 2011
  • Temporal trends and spatial distributions of ozone concentrations in Pohang were investigated using data measured at 4 air quality monitoring stations (i.e., Daedo, Jukdo, Jangheung, and Desong) during 2002-2006. The monthly mean ozone concentrations were highest during April and June and decreased during July and August, which follows the typical trend in the Northeast Asia region. The high springtime ozone concentration might have been strongly influenced by the enhanced photochemical ozone production of accumulated precursors during the winter under increased solar radiations. In July and August, ozone levels were decreased by frequent and severe precipitation that caused lower mean monthly solar radiation and efficient wash-out of ozone precursors. This suggests that precipitation is extremely beneficial in the aspect of ozone pollution control. High ozone concentrations exceeding 80ppb dominantly occurred in May and June during the late afternoon between 16:00~17:00. Ozone concentrations were higher in Jangheung and Daesong relative to Daedo and Jukdo, whereas total oxidants $(O_3+NO_2)$ were higher in Jangheung and Daedo. In the suburban area of Daesong, ozone concentrations seem to be considerably higher than those in urban sites of Daedo and Jukdo due to lower ozone loss by NO titration with lower local NO level.

Evaluation of the Troposphere Ozone in the Reanalysis Datasets: Comparison with Pohang Ozonesonde Observation (대류권 오존 재분석 자료의 품질 검증: 포항 오존존데와 비교 검증)

  • Park, Jinkyung;Kim, Seo-Yeon;Son, Seok-Woo
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.53-59
    • /
    • 2019
  • The quality of troposphere ozone in three reanalysis datasets is evaluated with longterm ozonesonde measurement at Pohang, South Korea. The Monitoring Atmospheric Composition and Climate (MACC), European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERAI) and Modern Era Retrospective-Analysis for Research and Applications version 2 (MERRA2) are particularly examined in terms of the vertical ozone structure, seasonality and long-term trend in the lower troposphere. It turns out that MACC shows the smallest biases in the ozone profile, and has realistic seasonality of lower-tropospheric ozone concentration with a maximum ozone mixing ratio in spring and early summer and minimum in winter. MERRA2 also shows reasonably small biases. However, ERAI exhibits significant biases with substantially lower ozone mixing ratio in most seasons, except in mid summer, than the observation. It even fails to reproduce the seasonal cycle of lower-tropospheric ozone concentration. This result suggests that great caution is needed when analyzing tropospheric ozone using ERAI data. It is further found that, although not statistically significant, all datasets consistently show a decreasing trend of 850-hPa ozone concentration since 2003 as in the observation.

Indirect Assessment on Helth affect of Air Pollutants Generated by Photo-Chemical Reaction (광화학반응에 의해 생성된 대기오염물질이 인체에 미치는 영향의 간접평가 (우리 나라 대기오존농도 추이와 문헌고찰을 중심으로))

  • 신찬기;김대선
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.2
    • /
    • pp.32-40
    • /
    • 1994
  • The concentration of ozone in 5 major cities in Korea( Seoul, Pusan, Taegu, Kwangjoo, Incheon ) has been shown increasing trend after 1984, while decreasing trend in Hsan. According to the data from 12 monitoring stations in 9 cities of metropolitan area from January 1994 to August 1994, ozone concentration exceeded short term standard 99 times and 87%(861imes) of those was occurred during July and Augusta while the maximum ozone concentration was appeared mainly between 14: 00 and 17: 00 daily. As the result of epidemiological survey, main substances which irritate eyes were identified to be PAN and formaldehyde rather than ozone while ozone was identified to be reachable to deep part of respiratory system main target organ of ozone.

  • PDF

The Technical Trend and Prospect of Ozonizer (오존발생기의 기술동향 및 전망)

  • Cho, Kook-Hee;Kim, Young-Bae;Lee, Hyeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1655-1657
    • /
    • 2001
  • Ozone is widely used to sterilize food and tap water because ozone is a strong oxidizer. Efficient ozone generation is the most important issue in the field of ozone application. A variable discharge type of ozonizer that generates diffuse glow discharge in air at atmospheric pressure was used for the efficient ozone generation.

  • PDF

Characteristics of Concentration Distribution of Coastal Urban Air Pollutants (연안 도시 대기오염 물질의 농도분포 특성)

  • 박종길;석경하;김지형;차주완
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1243-1252
    • /
    • 2002
  • This paper aims to find the characteristics of concentration distribution of coastal urban air pollutants. For this purpose, It was used the daily meteorological data and the hourly concentration data for $O_3$and NO$_2$ in Busan metropolitan city from 1994 to 1996. It was investigated the annual and monthly distribution of ozone and nitrogen dioxide concentration at each site in Busan, and also investigated the characteristics of concentration change of air pollutants with time under the sea breeze. As a results, the concentration of nitrogen dioxide and ozone tend to be increased every year and nitrogen dioxide concentration is higher than ozone concentration at all sites in Busan. The concentration of ozone is high in summer season and low in winter season, but the concentration of nitrogen dioxide have a reversed trend. The monthly peak concentration of ozone occurred in April and September, while the monthly minimum concentration of nitrogen dioxide occurred in August. Their trend were identified by sites near the coastline than sites stands apart from the coastline. The sea breeze occurred annual mean 81 day in Busan from 1994 to 1996. The main wind direction of sea breeze was classified into southwesterly and southeasterly. In case of southwesterly, It was pronounced the south wind and southwest wind. In case of southeasterly, the occurrence frequency of east wind was high. Especially, the concentrations of urban air pollutants, such as ozone and nitrogen dioxide, were high on time which the sea breeze flow, and the areas that ozone concentration was high moved from outside part to central part of city with time. In costal urban such as Busan, the wind direction of sea breeze is influenced the change of ozone and nitrogen dioxide concentration on time which the sea breeze flow at each site and also influenced the change of air pollutants concentration of sites on the pathway of sea breeze.