DOI QR코드

DOI QR Code

The Long Term Trends of Tropospheric Ozone in Major Regions in Korea

  • Shin, Hye Jung (Air Quality Research Division, National Institute of Environmental Research) ;
  • Park, Ji Hoon (Air Quality Research Division, National Institute of Environmental Research) ;
  • Park, Jong Sung (Air Quality Research Division, National Institute of Environmental Research) ;
  • Song, In Ho (Air Quality Research Division, National Institute of Environmental Research) ;
  • Park, Seung Myung (Air Quality Research Division, National Institute of Environmental Research) ;
  • Roh, Soon A (Air Quality Research Division, National Institute of Environmental Research) ;
  • Son, Jung Seok (Air Quality Research Division, National Institute of Environmental Research) ;
  • Hong, You Deog (Air Quality Research Division, National Institute of Environmental Research)
  • Received : 2017.03.21
  • Accepted : 2017.08.09
  • Published : 2017.12.31

Abstract

This study was conducted for analyzing the contribution factors on ozone concentrations and its long term trends in each major city and province in Korea through several statistical methods such as simple linear regression, generalized linear model, KZ-filer, correlation matrix, Kringing method, and cluster analysis. The overall ozone levels in South Korea have been consistently increasing over the past 10 years. The ozone concentrations in Seoul, the biggest city in Korea, are the lowest in all areas with the highest increasing ratio for $95^{th}%$ ozone. It is thought that the active photochemical reaction could affect the higher ozone concentration increase. On the other hand, the ozone concentrations in Jeju are the highest in Korea with the highest increasing ratio for $5^{th}%$, $33^{th}%$, and $50^{th}%$ ozone. It is also thought that the weak $NO_x$ titration could be the reason of higher ozone concentrations in Jeju. In case of Jeju, transport related factors is the major factor affecting the ozone trend. Thus, it is assumed that the variation of ozone trend of Asian region affecting the ozone trend in Jeju, where domestic ozone photochemical reaction is less active than urban area. It is thought that the photochemical reaction plays the role of increasing of ozone concentrations in the urban area, even though the LRT affected on the increase of ozone concentrations in non-urban area.

Keywords

References

  1. Abdul-Wahab, S., Bouhamra, W., Ettouney, H., Sowerby, B., Crittenden, B.D. (1996) Predicting ozone levels: a statistical model for predicting ozone levels. Environmental Science and Pollution Research 3, 195-204. https://doi.org/10.1007/BF02986958
  2. Berntsen, T., Isaksen, I.S.A., Wang, W.C., Liang, X.Z. (1996) Impacts of increased anthropogenic emissions in Asia on tropospheric ozone and climate-a global 3-D model study. Tellus Series B 48, 13-32. https://doi.org/10.3402/tellusb.v48i1.15662
  3. Bloomfield, P., Royle, J.A., Steinberg, L.J., Yang, Q. (1996) Accounting for meteorological effects in measuring urban ozone levels and trends. Atmospheric Environment 30, 3067-3077. https://doi.org/10.1016/1352-2310(95)00347-9
  4. Brook, R.D., Brook, J.R., Urch, B., Vincent, R., Rajagopalan, S., Silverman, F. (2002) Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation 105, 1534-1536. https://doi.org/10.1161/01.CIR.0000013838.94747.64
  5. Camalier, L., Cox, W.M., Dolwick, P. (2007) The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmospheric Environment 41, 7127-7137. https://doi.org/10.1016/j.atmosenv.2007.04.061
  6. Chameides, W.L., Li, X., Tang, X., Zhou, X., Luo, C., Kiang, C.S., John, J.St., Saylor, R.D., Liu, S.C., Lam, K.S., Wang, T., Giorgi, F. (1999) Is ozone pollution affecting crop yields in China. Geophysical Research Letter 26, 867-870. doi:10.1029/1999GL900068
  7. Cooper, O.R., Gao, R.S., Tarasick, D., Leblanc, T., Sweeney, C. (2012) Long-term ozone trends at rural ozone monitoring sites across the United States, 1990-2010. Journal of Geophysical Research 117, D22307. doi:10.1029/2012JD018261
  8. Cooper, O.R., Parrish, D.D., Stohl, A., Trainer, M., Nedelec, P., Thouret, V., Cammas, J.P., Oltmans, S.J., Johonson, B.J., Tarasick, D., Leblanc, T., McDermid, I.S., Jaffe, D., Gao, R., Stith, J., Ryerson, T., Aikin, K., Campos, T., Weinheimer, A., Avery, M.A. (2010) Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature 463, 21. doi:10.1038/nature08708
  9. Cox, W., Chu, S. (1993) Meteorologically adjusted ozone trends in urban areas: a probabilistic approach. Atmospheric Environment 27B, 425-434.
  10. Cressie, N. (1993) Statistics for spatial data. Wiley, New York. USA.
  11. Davis, J.M., Eder, B.K., Nychka, D., Yang, Q. (1998) Modeling the effects of meteorology on ozone in Houston using cluster analysis and generalized additive models. Atmospheric Environment 32, 2505-2520. https://doi.org/10.1016/S1352-2310(98)00008-9
  12. Department for Environment Food & Rural Affairs. (DEFRA). Data Archive. http://uk-air.defra.gov.uk/data
  13. Draxler, R.R., Hess, G.D. (1997) Description of the HYSPLIT 4 Modeling System. NOAA Technical Memorandum ERLARL-224. Air Resources Laboratory, Silver Spring, Maryland. http://www.arl.noaa.gov/documents/reports/arl-224.pdf
  14. Duenas, C., Fernandez, M.C., Canete, S., Carretero, J., Liger, E. (2002) Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast. Science of Total Environment 299, 97-113. https://doi.org/10.1016/S0048-9697(02)00251-6
  15. Folinsbee, L.J., McDonnel, W.F., Horstmann, D.H. (1988) Pulmonary function and symptom reasponse after 6.6-hour exposure to 0.12 ppm ozone with moderate exercise. Journal of Air Pollution Control Association 38, 28-35.
  16. Ghim, YS. (2011). Impact of Asian dust on atmospheric environment. Journal of Korean Society of Atmospheric Environment 27(3), 255-271 (in Korean). https://doi.org/10.5572/KOSAE.2011.27.3.255
  17. Gold, D.R., Litonjua, A., Schwartz, J., Lovett, E., Larson, A., Nearing, B., Allen, G., Verrier, M., Cherry, R., Verrier, R. (2000). Ambient pollution and heart rate variability. Circulation 101, 1267-1273. Atmospheric Environment 27(3), 255-271.
  18. Hastie, T.I., Tjbshirani, R.J. (1990) Generalized additive models. Chapman & Hall, New York.
  19. Jacob, D.J., Logan, J.A., Murti, P.P. (1999) Effect of rising Asian emissions on surface ozone in the United States. Geophysical Research Letter 26, 2175-2178, doi:10.1029/1999GL900450
  20. Kang, E.H., Han, J.H., Lee, M.H., Lee, G.W., Kim, J.C. (2013) Chemical characteristics of size-resolved aerosols from Asian dust and haze episode in Seoul Metropolitan City. Atmospheric Research 127, 34-46. https://doi.org/10.1016/j.atmosres.2013.02.002
  21. Kong, B.J., Han, J.S., Lee, M.D., Lee, J.Y., Park, J.S. (2006) Study on the meteorological parameters impaction on the fine particle concentration. National Institute of Environmental Research, Incheon, Korea. http: //webbook.me.go.kr/ebook/viewer.asp?docLocation=EBOOK/12/77/0000167712 (in Korean).
  22. Korea Ministry of Environment (KMOE) (2012) Annual report of air quality in Korea 2011, 11-1480523-000198-10, National Institute of Environmental Research, Environmental Research Complex, Incheon.
  23. Korean Statistical Information Service (KOSIS) (2014) http://kosis.kr/statisticsList/statisticsList_01List.jsp?Vwcd=MTJTITLE&parmTabId=M010MT1 (in Korean).
  24. Korsog, P.E., Wolff, G.T. (1991) An examination of ozone urban trends in the northeastern U.S. (1973-1983) using a robust statistical method. Atmospheric Environment B 25, 47-57. http://library.me.go.kr/search/DetailView.Popup.ax?sid=11&cid=5515496 (in Korean). https://doi.org/10.1016/0957-1272(91)90039-H
  25. Lee, J.Y., Kong, B.J., Han, J.S., Lee, M.D. (2008) Long term analysis of PM10 concentration in Seoul using KZ filter. Journal of Korean Society for Atmospheric Environment 24(1), 63-71 (in Korean). https://doi.org/10.5572/KOSAE.2008.24.1.063
  26. Mauzerall, D.L., Sultan, B., Kima, N., Bradford, D.F. (2005) $NO_x$ emissions from large point sources: variability in ozone production, resulting health damages and economic costs. Atmospheric Environment 39, 2851-2866. https://doi.org/10.1016/j.atmosenv.2004.12.041
  27. Park, S.M., Moon, K.J., Park, J.S., Kim, H.J., Ahn, J.Y., Kim, J.S. (2012) Chemical characteristics of ambient aerosol during Asian dusts and high PM episodes at Seoul intensive monitoring site in 2009. Journal of Korean Society for Atmospheric Environment 28(3), 282-293 (in Korean). https://doi.org/10.5572/KOSAE.2012.28.3.282
  28. R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://web.mit.edu/r_v3.01/fullrefman.pdf
  29. Santurtun, A., Gonzalez-Hidalgo, J.C., Sanchez-Lorenzo, A., Zarrabeitia, M.T. (2015) Surface ozone concentration trends and its relationship with weather types in Spain (2001-2010). Atmospheric Environment 101, 10-22. https://doi.org/10.1016/j.atmosenv.2014.11.005
  30. Schmidt, M. (2001) Overview of national analyses-Presentation from October 2001 RTP Monitoring Strategy Workshop. U. S. Environmental Protection Agency. http://www.epa.gov/ttn/amtic/netamap.html
  31. Seinfeld, J.H., Pandis, S.N. (2006) Atmospheric Chemistry and Physics. Second ed. John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 205-236.
  32. Shin, H.J., Cho, K.M., Han, J.S., Kim, J.S., Kim, Y.P. (2012) The effects of precursor emission and background concentration changes on the surface ozone concentration over Korea. Aerosol and Air Quality Research 12, 93-103.
  33. Shin, H.J., Kim, J.C., Lee, S.J., Kim, Y.P. (2013) Evaluation of the optimum volatile organic compounds control strategy considering the formation of ozone and secondary organic aerosol in Seoul, Korea. Environmental Science and Pollution Research 20, 1468-1481. https://doi.org/10.1007/s11356-012-1108-5
  34. Shin, H.J., Park, J.H., Son, J.S., Rho, S.A., Hong, Y.D. (2015) Statistical analysis for ozone long term trend stations in Seoul. Korean Journal of Environmental Impact Assessment 24(2), 111-118. https://doi.org/10.14249/eia.2015.24.2.111
  35. Tanimoto, H., Sawa, Y., Matsueda, H., Uno, I., Ohara, T., Yamaji, K., Kurokawa, J., Yonemura, S. (2015) Significant Latitudinal Gradient in the Surface Ozone Spring Maximum over East Asia. Geophysical Research Letter 32, L21805, doi:10.1029/2005GL023514
  36. Thompson, A.M., Witte, J.C., Hudson, R.D., Guo, H., Herman, J.R., Fujiwara, M. (2001) Tropical tropospheric ozone and biomass burning. Science 291, 2128-2132. https://doi.org/10.1126/science.291.5511.2128
  37. Touloumi, G., Katsouyanni, K., Zmirou, D., Schwartz, J., Spix, C., Ponce de Leon, A., Tobias, A., Quennel, P., Rabczenko, D., Bacharova, L., Bisanti, L., Vonk, J.M., Ponka, A. (1997) Short term effects of ambient oxidant exposure on mortality: A combined analysis within the APHEA Project. American Journal of Epidemiology 146, 177-185. https://doi.org/10.1093/oxfordjournals.aje.a009249
  38. U. S. Environmental Protection Agency (U. S. EPA) (2002) Assessment of the ambient air monitoring networks. http://www.epa.gov/ttn/amtic/files/ambient/pm25/workshop/atlanta/r4netas.pdf
  39. Vingarzan, R. (2004) A Review of Surface Ozone Background Levels and Trends. Atmospheric Environment 38, 3431-3442. https://doi.org/10.1016/j.atmosenv.2004.03.030
  40. Wang, T., Wei, X.L., Ding, A.J., Poon, C.N., Lam, K.S., Li, Y.S., Chan, L.Y., Anson, M. (2009) Increasing surface ozone concentrations in the background atmosphere of southern China, 1994-2007. Atmospheric Chemistry and Physics Discussion 9, 10429-10455. https://doi.org/10.5194/acpd-9-10429-2009
  41. Wise, E.K., Comrie, A.C. (2005) Meteorologically adjusted urban air quality trends in the Southwestern United States. Atmospheric Environment 39, 2969-2980. https://doi.org/10.1016/j.atmosenv.2005.01.024
  42. Xu, X., Lin, W., Wang, T., Yan, P., Tang, J., Meng, Z., Wang, Y. (2008) Long term trend of surface ozone at a regional background station in eastern China 1991-2006: enhanced variability. Atmospheric Chemistry and Physics 8, 2595-2607. https://doi.org/10.5194/acp-8-2595-2008
  43. Zheng, J., Swall, J., Cox, W.M., Davis, J. (2007) Interannual variation in meteorologically adjusted ozone levels in the eastern United States: A comparison of two approaches. Atmospheric Environment 41, 705-716. https://doi.org/10.1016/j.atmosenv.2006.09.010

Cited by

  1. Decadal Shifts in Wind Patterns Reduced Continental Outflow and Suppressed Ozone Trend in the 2010s in the Lower Troposphere Over Japan pp.2169897X, 2018, https://doi.org/10.1029/2018JD029266
  2. 부산지역 오존농도의 시·공간 분포 변화 vol.28, pp.2, 2017, https://doi.org/10.5322/jesi.2019.28.2.169
  3. Characterization of Emission Factors Concerning Gasoline, LPG, and Diesel Vehicles via Transient Chassis-Dynamometer Tests vol.9, pp.8, 2017, https://doi.org/10.3390/app9081573
  4. Review on Ozone Management in US and Recommendations for Domestic Ozone Control vol.35, pp.3, 2019, https://doi.org/10.5572/kosae.2019.35.3.370
  5. Tropospheric ozone pollution reduces the yield of African crops vol.206, pp.2, 2017, https://doi.org/10.1111/jac.12376
  6. Variations in Ozone Concentration over the Mid-Latitude Region Revealed by Ozonesonde Observations in Pohang, South Korea vol.11, pp.7, 2017, https://doi.org/10.3390/atmos11070746
  7. Current Status and Future Directions of Tropospheric Photochemical Ozone Studies in Korea vol.36, pp.4, 2017, https://doi.org/10.5572/kosae.2020.36.4.419
  8. Long-term Assessment of Ozone Nonattainment Changes in South Korea Compared to US, and EU Ozone Guidelines vol.15, pp.4, 2017, https://doi.org/10.5572/ajae.2021.098