• Title/Summary/Keyword: ozone treatments

Search Result 58, Processing Time 0.025 seconds

Changes in Quality of 'Mipung' Chestnut during Storage by Pre-treatment Methods after Harvest (수확 후 전처리 방법에 따른 '미풍' 밤의 저장 중 품질 변화)

  • Oh, Sung-Il;Park, Yunmi;Kim, Mahn-Jo
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.4
    • /
    • pp.558-563
    • /
    • 2015
  • The effects of pre-treatment methods (water cooling, water cooling+ozone, precooling+microbubble, water cooling+ozone+microbubble) after harvest on the quality of 'Mipung' chestnut were studied. Changes in quality of chestnut were greater precooling treatments effect than washing treatments. But, decaying rate and total microorganism were significantly differences among treatments. The decaying rate after 12 weeks storage was highest at 20.0% in non-treatments and lowest at 3.3% in water cooling+ozone and water cooling+ozone+microbubble treatments. The total microorganism immediately after washing treatments was in the order non-treatments (4.4 log CFU/g) > water cooling treatments (4.0 log CFU/g) > water cooling+ozone+microbubble treatments (3.5 log CFU/g) > water cooling+ozone treatments (3.4 log CFU/g) > water cooling+microbubble treatments (3.3 log CFU/g), and after 12 weeks storage was increased within 4.7 to 5.9 log CFU/g. Thus, the washing treatments, especially ozone treatments, extended the shelf-life of the 'Mipung' chestnut by inhibiting the decaying.

Effect of nanobubbles (oxygen, ozone) on the Pacific white shrimp (Penaeus vannamei), Vibrio parahaemolyticus and water quality under lab conditions

  • Nguyen, Huu Nghia;Nguyen, Thi Nguyen;Phan, Trong Binh;Le, Thi May;Tong, Tran Huy;Pham, Thai Giang;St-Hilaire, Sophie;Phan, Thi Van
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.8
    • /
    • pp.429-440
    • /
    • 2022
  • This study assessed the effects of oxygen and ozone nanobubbles on gill morphology, weight gain, and mortality of Pacific white shrimp (Penaeus vannamei), as well as the level of Vibrio parahaemolyticus and water quality of shrimp culture tanks under lab conditions. Two experiments were carried out with oxygen macrobubble, ozone macrobubble, oxygen nanobubble, ozone nanobubble, and control treatments (air-stone macrobubble). Experiments were done in triplicate in 100 L tanks with 15‰ saline water, and 20 shrimp per tank. Tanks in Experiment 1 were not inoculated with bacteria; tanks in Experiment 2 were inoculated with V. parahaemolyticus at a concentration of 106 CFU/mL. The results revealed that short treatments with ozone nanobubbles had minimal impact on shrimp gills, mortality, and growth rates, reduced V. parahaemolyticus concentration in water compared to the other groups, and improve water quality. These laboratory results indicate that ozone nanobubble treatment may be useful for controlling V. parahaemolyticus. More work is needed to find the best protocol to apply the technology on a commercial scale.

Interactive Effects of Ozone and Light Intensity on Platanus occidentalis L. Seedlings

  • Kim, Du-Hyun;Han, Sim-Hee;Lee, Kab-Yeon;Kim, Pan-Gi
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.5
    • /
    • pp.508-515
    • /
    • 2008
  • Sycamore (Platanus occidentalis L.) seedlings were grown under low light intensity and ozone treatments to investigate the role of the light environment in their response to chronic ozone stress. One-year-old seedlings of Platanus occidentalis L. were grown in pots for 3 weeks under low light (OL, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and high light (OH, $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) irradiance in combination with 150 ppb of ozone fumigation. After three weeks of ozone and light treatment, seedlings were placed in ozone free clean chamber for 3 weeks for recovery from ozone stress with same light conditions to compare recovery capacity. Ozone fumigation determined an impairment of the photosynthetic process. Reduction of leaf dry weight (14%) and shoo/root ratio (17%) were observed in OH treatment. OL treatment also showed severe reductions in leaf dry weight and shoot/root ratio by 48% and 36% comparing to control, respectively. At the recovery phase, OH-treated plants recovered their biomass, whereas OL-treated plant showed reduction in leaf dry weight (52%) and shoot/root ratio (49%). OH-treated plants reached similar relative growth rate (RGR) comparing to control, whereas OL-treated plants showed lower RGR in stem height. However, there were no significant differences in response to those treatments in stem diameter RGR at the recovery phase. Ozone treatment produced significant reduction of net photosynthesis in both high and low light treatments. Carboxylation efficiency and apparent quantum yield in OL-treated plants showed significant reductions rate to 10% and 45%, respectively. At the recovery stage, ozone exposed seedlings under high light had similar photosynthetic capacity comparing to control plants. Antioxidant enzymes activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) were increased in ozone fumigated plants only under low light. The present work shows that the physiological changes occur in photosynthesis-related parameters and growth due to ozone and low light stress. Thus, low light seems to enhance the detrimental effects of ozone on growth, photosynthesis, and antioxidant enzyme responses.

Development of Activated Graphite Felt Electrode Using Ozone and Ammonia Consecutive Post Treatments for Vanadium Redox Flow Batteries (오존, 암모니아 순차적 처리를 통한 바나듐 레독스 흐름 전지용 활성화 카본 펠트 전극 개발)

  • CHOI, HANSOL;KIM, HANSUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.256-262
    • /
    • 2021
  • A carbon felt electrode was prepared using ozone and ammonia sequential treatment and applied as an electrode for a vanadium redox flow battery (VRFB). The physical and electrochemical analyses demonstrate that the oxygen groups facilitate nitrogen doping in the carbon felt. Carbon felt (J5O3+NH3), which was subjected to ammonia heat treatment after ozone treatment, showed higher oxygen and nitrogen contents than carbon felt (J5NH3+O3), which was subjected to ammonia heat treatment first and then ozone treatment. From the charging/discharging of VRFB, the J5O3+NH3 carbon felt electrode showed 14.4 Ah/L discharge capacity at a current density of 150 mA /cm2, which was 15% and 33% higher than that of J5NH3+O3 and non-activated carbon felt (J5), respectively. These results show that ozone and ammonia sequential treatment is an effective carbon felt activation method to increase the performance of the vanadium redox flow battery.

Effects of Crack Resistance Properties of Ozone-treated Carbon Fibers-reinforced Nylon-6 Matrix Composites (탄소섬유의 오존처리가 나일론6 기지 복합재료의 크랙저항에 미치는 영향)

  • Han, Woong;Choi, Woong-Ki;An, Kay-Hyeok;Kim, Hong-Gun;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.363-369
    • /
    • 2013
  • In this work, the effects of ozone treatments on mechanical interfacial properties of carbon fibers-reinforced nylon-6 matrix composites were investigated. The surface properties of ozone treated carbon fibers were studied by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Mechanical interfacial properties of the composites were investigated using critical stress intensity factor ($K_{IC}$). The cross-section morphologies of ozone-treated carbon fiber/nylon-6 composites were observed by scanning electron microscope (SEM). As a result, $K_{IC}$ of the ozone-treated carbon fibers-reinforced composites showed higher values than those of as-received carbon fibers-reinforced composites due the enhanced $O_{1s}/C_{1s}$ ratio of the carbon fiber by the ozone treatments. This result concludes that the mechanical interfacial properties of nylon-6 matrix composites can be controlled by suitable ozone treatments on the carbon fibers.

Post Sliced Cleaning of Silicon Wafers using Ozone and Ultrasound (오존과 초음파를 이용한 실리콘 웨이퍼의 Post Sliced Cleaning)

  • Choi, Eun-Suck;Bae, So-Ik
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.75-79
    • /
    • 2006
  • The effect of ozone and/or ultrasound treatments on the efficiency of slurry removal in post sliced cleaning (PSC) of silicon ingot was studied. Efficiency of slurry removal was evaluated as functions of time, temperature and surfactant with DOE (Design of Experiment) method. Residual slurries were observed on the wafer surface in case of cleaning by ozone or ultrasound separately. However, a clean wafer surface was appeared when cleaned with ozone and ultrasound simultaneously. It has found that cleaning time was the main effect among temperature, time and surfactant. Elevated temperature, addition of surfactant and high ozone concentration helped to accelerate efficient removal of slurry. The improvement of removal efficiency seems to be related to the formation of more active OH radicals. The highly cleaned surface was achieved at 10 wt% ozone, 1 min and 10 vol% surfactant with ultrasound. Application of ozone and ultrasound might be a useful method for PSC process in wafer cleaning.

An Ozone Micro-bubble Technique for Seed Sterilization in Alfalfa Sprouts

  • Kwack, Yurina;Kim, Kyoung Koo;Hwang, Hyunseung;Chun, Changhoo
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.901-905
    • /
    • 2014
  • The efficacy of ozone micro-bubble water (OMBW) in reducing microbial populations on alfalfa seeds was investigated in this study. We observed the surface of alfalfa seeds using microscopy and found that many cracks and crevices existing on the surface could harbor pathogens. Alfalfa seeds were treated with tap water (TW), micro-bubble water (MBW), ozone water (OW), ozone micro-bubble water (OMBW), and chlorine water (CL) for 5 min, and total microbial population, E. coli and Salmonella spp. colonies were determined. Also, the sterilized seeds were germinated and cultivated for 5 d after sowing to investigate the percentage of germination and the growth of alfalfa sprouts. The treatments with OMBW and CL were most effective in reducing total microbial populations and E. coli was eliminated by OW, OMBW, and CL treatments. CL treatment reduced the percentage of germination and fresh weight of alfalfa sprouts, but OMBW did not cause any negative effects on the germination and growth of alfalfa sprouts. These results indicate that OMBW can be used as an effective sanitizer for eliminating seed-borne pathogens without detrimental effects on seed viability.

Study of wastewater-treatment's efficiency using Bacillus subtilis: with an effect of ozonation (Bacillus subtilis를 이용한 폐수처리 효과연구: 오존의 영향을 중심으로)

  • 박영규
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.4
    • /
    • pp.29-38
    • /
    • 2002
  • Advanced oxidation of wastewater was studied with a purpose to remove TOC and color by the ozone-assisted Fenton reaction. The optimal conditions were determined by hydrogen peroxide and ozone concentrations. Experimental results indicate that the ozone treatment after Fentons process was found to provide very efficient removal efficiency in the process, avoiding the exclusive ozone treatment. The combined process of ozone in the Fenton oxidation respectively was increased removal efficiences of 10.7% in comparison with exclusive Fenton oxidation. Also, the treatments of ozone after Fenton's oxidation respectively had increased the removal efficiences of 16.%. As a result, the treatment of ozone after Fentons oxidation had the best removal efficiency of approximately 96%. Removal efficiency of color was significantly increased as mush as 26% by the advanced Fenton's oxidation in comparison with exclusive Fenton's oxidation. The removal efficiencies in the biological treatment using Bacillus subtilis after Fenton's oxidation and after Fenton's and ozone's oxidation were increased by 14% and 19% respectively. Although these combined Bacillus subtilis-assisted Fenton's oxidation was determined to be effective method to treat the dyeing wastewater in an economic point of view, the choice of wastewater treatment can be varied depending on water quality.

Comparing of Clonal Sensitivity of Populus deltoides to Atmospheric Ozone with Use of Visible Foliar Injury (잎의 가시적(可視的) 피해(被害)에 따른 오존에 대(對)한 미류나무(Populus deltoides) 클론간(間) 감수성(感受性) 비교(比較))

  • Lee, Jae-Cheon;Kim, In-Sik;Yeo, Jin-Kie;Koo, Yeong-Bon
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.10-18
    • /
    • 2001
  • Experiments were conducted to compare ozone sensitivity among clones. Ten clones of Papulus deltoides Marsh. were exposured in walk-in type chambers to charcoal-filtered air, 50ppb, 100ppb, and 150ppb ozone for 8h $day^{-1}$ for 21 consecutive days. Occurrence of premature leaf-fall, and visible foliar injury expressed as adaxial stipple were measured after termination of ozone exposure for 3 weeks. Rate of premature leaf-fall increased progressively according to ozone exposure levels. As a result, rate of premature leaf-fall was estimated over 50% at 150ppb ozone. In the charcoal-filtered air and 50ppb ozone treatments, visible foliar injury was not found. But injury was estimated as LA; 17.3%, AA; 6.5%, and LAA; 1.6% to 100ppb ozone treatment and LA; 34.1%, AA; 17.5%, and LAA; 7.4% to 150ppb ozone treatment. Clonal differences of sensitivity within the species were manifested by significant clone differences of adaxial stipple(LAA) in 100ppb and 150ppb ozone treatments.

  • PDF

Changes in Properties of Tropical Kapok Fibers by the Pretreatments (열대산 케이폭 섬유의 전처리에 따른 특성 변화)

  • Shin, Soo-Jeong;Jung, Woong-Ki;Sung, Yong Joo;Lee, Joon-Woo;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.52-58
    • /
    • 2013
  • The effets of the pretreatments of tropical kapok fibers were evaluated in this study in terms of water sorption capacity and oil sorption capacity. The alkali treatments with NaOH resulted in the reduction of lignin, oil and hemicellulose, which were detected with FT-IR spectrum. The reduction of the lyphophilic components such as fat on kapok fiber by the ozone treatments were also measured with FT-IR spectrum. The oil sorption capacity of kapok fiber was decreased by the alkali treatments and the ozone treatments, while the water sorption capacity was increased. The liquid sorption capacity were greatly affected by the mechanical cutting of kapok fiber which exposed the big lumen of kapok fiber. The hydrophilic property of kapok fiber could be controlled by the pretreatments, which would increase the applicability of kapok fiber for preparation of various functional paper products.