• Title/Summary/Keyword: ozone generator

Search Result 99, Processing Time 0.03 seconds

Air/Quartz Dielectric Double Barrier Pulse Discharge (공기/석영관(空氣/石英管) 복합유전체(複合誘電體)장벽층(障壁層)의 고주파(高周波) 펄스 방전(放電) 특성(特性))

  • Lee, Eung-Gwan;Woo, Jung-Uk;Chung, Suk-Hwan;Lee, Dong-Hoon;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1556-1558
    • /
    • 1994
  • An air/quartz dielectric double barrier pulse discharge has been investigated to develop a novel si lent type ozone generator. It is found that there are very active pulsed coronas occurred in the airgap which are very useful for ozone generation. And, the corona onset voltage of the airgap of the air/quartz double barrier was enfluenced greatly by the airgap of the air/quartz dielectric double barrier, and depended greatly upon the airgap ranged of $0.0{\sim}3.0mm$ and by the quartz tube thickness ranged of $1.75{\sim}2.25mm$.

  • PDF

High Concentration Ozone Generation Characteristics by Variation of Additional Gases and Flow Rates of Inlet Gas (입력가스의 유량변화와 첨가가스에 따른 고농도 오존발생특성)

  • 박승록;이대희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.95-101
    • /
    • 2002
  • There are many effective parameters to high concentration ozone generation. These parameters became very important elements should be considered before designing ozone generator. After designing, there are many peripheral parameters to greatly affect to high concentration ozone generation also. In this study, of many effective peripheral parameters on high concentration ozone generation, the effects of flow rate of inlet oxygen gas and some kinds of additional gases on ozone concentration were investigated As a result, when inlet oxygen gas was introduced at the range of 0.75[LPM]~2.00[LPM] the highest ozone concentration of 71145[ppm] was obtained at 1.25[LPM]. When the additional nitrogen gas was mixed to oxygen gas at the range of 0.0[vol%]~6.4[vol%] the highest ozone concentration of 73135[ppm] was obtained at 0.8[vol%] of nitrogen gas. This showed 3[%] increasing compared to the case of pure oxygen gas inlet. When the additional argon gas was mixed to oxygen gas at the range of 0.0[vol%]~6.4[vol%] the highest concentration of 67288[ppm]was obtained at 0.8[vol%]of argon gas. This is decreased value compared to that of introducing the pure oxygen.

Plasma Generation of Ferroelectric Ball/Mica Sheet Double Barrier Discharge (운모박판(雲母薄板)/강유전체소구(强誘電體小球) 복합장벽방전(複合障壁放電)의 플라즈마발생특성)

  • Geum, Sang-Taek;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1314-1316
    • /
    • 1995
  • Basic discharge characteristics of a ferroelectric ball and mica sheet double barrier have been studied for learning the fundamentals of the barrier discharges and for checking the potential to be used as a plasma generator. It is found that plasma generation of the plasma generator was influenced greatly by the dielectric constant of the ferroelectric ball barrier and applied power frequency. As a result, there are optimum conditions of the dielectric constant as a barrier and the applied frequency to generate ozone effectively, which were ${\varepsilon}_r$=600 and f=4 kHz at the present experimental case.

  • PDF

Radical Mist Generator Using a Water Plasma Jet and Its Sterilization Effect

  • Huh, Jin Young;Ma, Suk Hwal;Kim, Kangil;Choi, Eun Ha;Hong, Yong Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.175.1-175.1
    • /
    • 2016
  • In recent, tract infections such as atopic dermatitis, allergic rhinitis and a respiratory disease are increasing, giving rise to the atmospheric pollution, inflow of micro-size dust and side effect of humidifier disinfectant. In this context, the environment-friendly technology is required to eliminate airborne pathogens. We propose solution of the previous problems, making use of Radical Mist Generator (RMG). Existing technologies of air purification using a gas discharge produce harmful substances such as ozone, NOx, etc. However, the RMG uses a pure water as a plasma forming material. The RMG sprays the water mist, which contains reactive radicals to sterilize microorganisms. RMG is comprised of a power supply, plasma electrodes and a nozzle. In order to analyze the electrical characteristic and concentrations of reactive radicals, we employ an oscilloscope and a titration method. To test the sterilization effect of RMG, we used E.coli. We confirmed that E.coli was killed over 90%. Eventually, we expect that RMG can be promising tool for a purified system.

  • PDF

Effects of Ozone Treatment to Pig Liquid Manure on Reduction of Odorous Gases (돈분뇨 액비의 악취저감을 위한 오존처리 효과)

  • Jeong, J.W.;Yoo, Y.H.;Park, K.H.;Kam, D.H.;Choi, H.J.;Kim, T.I.;Cho, Y.S.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.161-170
    • /
    • 2007
  • Ozone from a pilot-scale ozone generator was treated on fermented pig liquid manure stored in a storage tank in order to reduce odor substances during the process of fermented liquid manure production. The group of ozone treatment showed one less than the organic matter compared that of the control. The preferable condition for characteristic changes was when the ratio of BOD to COD was less than 1.5. Ozone treatment showed better oxidizing power than control as it removed more suspended solids and had less methyl isobutyl ketone(P<0.05). Odor reduction measured by olfactory method was higher in ozone treatment than in control.

  • PDF

Frequency control method of ozonator power supply (오존발생기 구동장치의 주파수제어에 관한 연구)

  • 최규남
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.887-893
    • /
    • 1999
  • The characteristics of ozone generator targeted for air or water sterilizing in the vessel utilizing the surface corona discharge between the electrodes on the ceramic substrate was investigated by using the frequency control method. The frequency control was achieved by controlling the degree of resonance between the secondary winding inductance of transformer and the electrode capacitance of ceramic discharge plate, and the range of control was found to be 5 times of discharge current. This frequency control method showed the efficiency of 28 mP ozone generation and the stability within 3.4 % when the input voltage was varied within 40% range. The frequency control method is regarded to be more efficient way of corona discharge control compared to the conventional on/off control or voltage control methods.

  • PDF

A Study on Cooling Effect and Power Control of a Mini Ozonizer (소형 오존발생장치의 전력제어와 냉각효과에 관한 연구)

  • Woo, Sung-Hoon;Park, Seung-Cho;Yoon, Sung-Yoon;Park, Jee-Ho;Woo, Jung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.97-103
    • /
    • 2006
  • In this paper, a control method of a mini ozone generator is proposed, and also a cooling technique is described which is cooling down the flowing air gap into a silent discharger to $2^{\circ}C$ to generate ozone of high density and diffusing power. As the digital control system for this method, a double feedback loop is designed which detects the voltage and current of equivalent capacitor of the discharger and compensates for the poor power waveform caused by the noise at high discharging frequency. During the plant modeling of this system, computing time factor is considered as a unique parameter of the power system to improve the transient responses with regard to fluctuating load and to replenish the computing time delay of the controller. Through the experiment, sinusoidal input current for discharger can be acquired and all the effectiveness of this accurate control system over unstable ozone discharger are proved.

Analytical characterization of O3 samples prepared for investigation of tropospheric heterogeneous reactions

  • Kim, Mihyeon;Park, Jong-Ho
    • Analytical Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.212-217
    • /
    • 2022
  • In this study, ozone (O3) samples were prepared for investigating the heterogeneous reactions between O3 and tropospheric aerosols and were characterized by spectroscopic methods. O3 generated from an ozone generator was purified by selective adsorption on refrigerated silica gel, followed by transfer to a sample bulb. The amount of UV light (λ = 256 nm) absorbed by O3 was measured as a function of time at two different temperatures (room temperature and 50 ℃) and under different irradiation conditions. A correlation plot of 1/[O3] versus time showed that O3 decomposition follows the 2nd order reaction rate under a steady-state approximation. The initial concentration of O3, observed rate constants (kobs), and the half-life of O3 in the sample stored at room temperature were determined to be 2.74 [±0.14] × 1016 molecules·cm-3, 4.47 [±0.64] × 10-23 molecules-1·cm3·s-1, and 9.5 [±1.4] days, respectively. The evaluation of O3 stability under various conditions indicated that special care should be taken to prevent the exposure of the O3 samples to hightemperature environment and/or UV radiation. This study established a protocol for the preparation of highly purified O3 samples and confirmed that the O3 samples can be stored for a day after preparation for further experiments.

Implementing of Ozonated Olive Oil Manufacturing Device to Ensure Biocompatibility (생체 적합성이 확보를 위한 오존화 올리브오일 제조 장치 구현)

  • Duck-Sool Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.153-159
    • /
    • 2023
  • As research results showed that ozonated olive oil has excellent therapeutic effects on skin diseases, attempts were made to develop cosmetics manufacturing technology using ozone. Ozone is harmful to the human body, so a separate facility must be prepared to manufacture ozonated olive oil as a cosmetic raw material. The manufacturing device developed in this study was designed as an optimized process for manufacturing cosmetics while ensuring the safety of workers involved in production. To verify the ozonated olive oil produced from the implemented device, a toxicity test was conducted on animals. After applying ozonated oil (high concentration) to the rabbit's back for 24 hours, mortality, general symptoms and symptoms were measured. A skin irritation evaluation was performed. As a result of the experiment, as a result of evaluating the test substance treatment area after a certain period of time, it was confirmed that no skin irritation was observed in all animals, confirming the safety of the ozonated oil production process and the safety of the product.

A study of the space sterilization device using atmospheric-pressure DBDs plasma (대기압 유전체장벽방전을 적용한 플라즈마오존 공간살균장치에 관한 연구)

  • Oh, Hee-Su;Lee, Kang-yeon;Park, Ju-Hoon;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.281-289
    • /
    • 2022
  • Plasma ozone is utilized in a variety of applications in the field of sterilization due to its high sterilization performance. Dielectric materials used in DBD(dielectric barrier discharges) are mainly polymer, quartz and ceramics. These dielectric layers have the advantage of limiting the amount of supplied electron charge and allowing plasma to occur evenly on the surface of dielectric. Actually, the target or environment for sterilization is often a complex structure, so research and academic study are needed by utilizing the concept of space sterilization. In this study, the device is applied to generate DBD plasma at atmospheric pressure for disinfection due to the effectiveness in producing radicals and ozone. The generator of plasma ozone is a basic structure of dielectric barrier discharge by placing ceramic tube dielectrics and stainless steel electrical conductors at regular intervals. Various applications can be developed based on the proposed design method. Plasma ozone generation for space sterilization device is recognized as an excellent sterilization device. Through the design and verification of the device, we intend to establish an optimal design of the spatial sterilization device and provide the basis data for sterilization applications.