• Title/Summary/Keyword: oyster tissue

검색결과 46건 처리시간 0.028초

Study on the Contamination of Pseudomonas tolaasii in Oyster Mushroom (느타리버섯에서의 Pseudomonas tolaasii오염 연구)

  • 이혜영;장금일;김광엽
    • Journal of Food Hygiene and Safety
    • /
    • 제16권3호
    • /
    • pp.232-240
    • /
    • 2001
  • One hundred twenty five bacterial isolates were obtained from the brown blotch-diseased oyster mushrooms collected from markets. Among them, 45 were determined as pathogenic bacteria and white line forming organisms(WLFO) were 6 strains and white line reaction organisms (WLRO) were 6 strains. All of the white line forming isolates were identified as Pseudomonas tolaasii which is a known pathogen of brown blotch disease of oyster mushroom by GC-MIS(Gas chromatography-microbial identification system). Six of the white line reacting organisms were identified as P. chlomraphis, P. fluorescens biotype A and type C. The rest of them were P gingeri, P. agarici, P. fluorescens biotype B, P. chloroyaphis, non-pathogenic P. tolaasii, P. putida biotype A and B etc. For spectrum of activity of tolaasin, culture filtrates from pathogenic isolates were examined by browning of mushroom tissue and pitting of mushroom caps. The weak pathogenic bacteria didn't induce browning or pitting of mushroom tissue. On the other hand, strong pathogenic isolates showed browning and pitting reaction on mushroom. An extracellular toxin produced by P. tolaasii, was investigated. The hemolysis activity test of 6 strains identified as P. tolaasii were 0.8∼0.9 at 600 nm and 3 strains of WLRO were 0.9∼1.0 and Pseudomonas app. were 1.0∼1.2. Observation of fresh mushroom tissue using confocal laser scanning microscopy was carried out for images of optical sectioning and vertical sectioning. Also images of brown blotch diseased oyster mushroom tissue after contamination P. tolaasii was obtained by CLSM.

  • PDF

Insulin-Like Growth Factors-1 Receptor (IGF-1R) Expression and the Phosphorylation of Endogenous Substrates Lead to Maturation of the Pacific oyster, Crassostrea gigas

  • Park, Su-Jin;Choi, Youn Hee
    • Development and Reproduction
    • /
    • 제25권1호
    • /
    • pp.67-72
    • /
    • 2021
  • This study investigated the IGF-1 signal in specific tissues using Pacific oysters artificially matured via water temperature elevation. Pacific oysters were subjected to water temperature elevation from March to June, and 20 were randomly sampled each month. The condition index (CI) and tissue weight rate (TWR) were examined by measuring shell length, shell height, shell width, and soft tissue weight. The IGF-1 signal in tissues (adductor muscle, digestive glands, gills, labial palps, mantle edges, and gonads) was analyzed by sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. From April to June, the TWR of females and males increased from 19.1±2.9 to 21.0±3.6 and 18.2±2.0 to 19.2±2.5, respectively, while the CI remained the same. The IGF-1 signal in each tissue differed. IGF-1 was expressed in the adductor muscle, while tyrosine was expressed in all tissues. The phosphor (p)-ERK and p-AKT activities were high in the adductor muscle, mantle edge, and gonads. IGF-1 signaling affected the growth and maturity of the Pacific oysters examined.

Inactivation of a Norovirus Surrogate by High Pressure Treatment (고압처리에 의한 Norovirus Surrogate의 불활성화)

  • Lee, Hee-Jung;Oh, Eun-Gyoung;Yu, Hong-Sik;Shin, Soon-Bum;Park, Yu-Sun;Shin, Yun-Kyung;Park, Jung-Jun;Yoon, Ho-Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제42권3호
    • /
    • pp.232-237
    • /
    • 2009
  • Norovirus surrogate (feline calicivirus) was inactivated by treatment at 50,000 psi for 60 sec by 6.8-$log_{10}TCID_{50}mL^{-1}$. Tissue obtained from oyster (digestive gland, gill and mantle) was qualitatively destroyed and distorted by treatment at pressure greater than 5,000 psi for 60 sec. High pressure treatment induced progressive changes in the color of the oyster adductor muscle. High pressure treatment effectively reduced norovirus surrogate but induced conformational changes in the tissue and color of oyster flesh.

Determination of trace elements in food reference materials by instrumental neutron activation analysis

  • Cho, K.H.;Zeisler, R.;Park, K.W.
    • Analytical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.520-528
    • /
    • 2005
  • Two biological Certified Reference Materials (CRMs), KRISS 108-04-001 (oyster tissue) and 108-05-001 (water dropwort stem), were prepared by Korea Research Institute of Standards and Science (KRISS)during FY '01. The certified values of these materials had been determined by Isotope Dilution Mass Spectrometry (IDMS) for six elements (Cd, Cr, Cu, Fe, Pb and Zn). Additional analytical works are now progressing to certify the concentrations of a number of the environmental and nutrimental elements in these CRMs. The certified values in a CRM are usually determined by using a single primary method with confirmation by other method(s) or using two independent critically-evaluated methods. Instrumental Neutron Activation Analysis (INAA) plays an important role in the determination of certified values as it can eliminate the possibility of common error sources resulting from sample dissolution. In this study INAA procedure was used in determination of 23 elements in these two biological CRMs to acquire the concentration information and the results were compared with KRISS certified values.

Effect of Polycyclic Aromatic Hydrocarbon (PAH) on Shell Repair in the Pacific oyster, Crassostrea gigas

  • Cho, Sang-Man;Lee, You-Me;Jeong, Woo-Geon
    • The Korean Journal of Malacology
    • /
    • 제27권1호
    • /
    • pp.35-42
    • /
    • 2011
  • In order to understand effect of polycyclic aromatic hydrocarbon (PAH) on shell repair of the Pacific oyster, Crassostrea gigas, shell regeneration experiments were carried out using oysters drilled a hole on the right valve. The change of pH and hemocytic characteristics in both extrapallial fluid and hemolymph were observed during the shell repair. The thickness of mantle tissue was apparently decreased, while necrosis in epithelium and periostracal gland was increased in response to PAH exposure. Our finding suggested that PAH could adversely influence on shell repair.

Preparation and Quality Characteristics of Enzymatic Salt-fermented Pearl Oyster, Pinctada fucata martensii (효소분해 진주조개(Pinctada fucata martensii) 젓갈의 제조 및 품질특성)

  • Kim, In-Soo;Kim, Hye-Suk;Han, Byoung-Wook;Kang, Kyung-Tae;Park, Jeong-Min;Oh, Hyeun-Seok;Han, Gang-Uk;Kim, Jin-Soo;Heu, Min-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제39권1호
    • /
    • pp.9-15
    • /
    • 2006
  • As a part of the investigation for utilizing pearl oyster by-products, a rapid salt-fermented pearl oyster using commercial enzyme was prepared and also examined on the characteristics. The salt-fermented pearl oyster prepared by optimal condition, which was prepared by mixing of minced pearl oyster, 15% salt, and 1% $Protamex^\circledR$ and fermented for 4 weeks, was superior in hydrolysis degree (28.7%) and ACE inhibitory activity (92.6%) to salt-fermented pearl oyster prepared by other conditions, such as the use of whole tissue, different enzymes $(Alcalase^\circledR,\;Neutrase^\circledR\;and\;Flavourzyme^\circledR)$, different salt concentrations (20 and 25%), and different fermentation periods (2, 6 and 8 weeks). There were, however, some shortcomings with this product. It showed a dark green color and an unfavorable bitter taste. These shortcomings were improved by the addition of seasoning paste. The calcium and phosphorus contents of the seasoned salt-fermented pearl oyster were 64.2 mg/100 g and 71.6 mg/100 g, respectively, and the calcium content based on phosphorus was a good ratio for absorbing calcium. The total amino acid content of the seasoned and salt-fermented pearl oyster was 7,054 mg/100 g and the major amino acids ware aspartic acid (555.1 mg/100 g), glutamic acid (1,131.2 mg/100 g), alanine (658.2 mg/100 g), and lysine (695.5 mg/100 g). The seasoned salt-fermented pearl oyster, along with angiotensin I converting enzyme (ACE) inhibitory activity (98.3%), also showed a recognizable level (87.5%) of anti-oxidative activity.

Modeling Oyster Populations Dynamics -I. Effect of Available Food on Growth of the Pacific Oyster Crassostrea gigas in Goseong Bay, Korea- (수치모델을 이용한 고성만 양식 참굴의 연구 -I. 먹이가 참굴의 성장에 미치는 영향-)

  • Oh Kyung Hee;Pang Ig Chan;HOFMANN Eileen E.;Kim Yoon;Kim Sung Yeon;Park Yoon Jung;Choi Kwang Sik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제35권4호
    • /
    • pp.327-335
    • /
    • 2002
  • Effects of available food on growth of commercially cultured Pacific oysters, Crassostrea gigas in Goseong Bay on the south coast were studied using a numerical model. levels of total protein, carbohydrate and lipid in particulate organic matter in the water column as well as chlorophyll a concentration were determined for estimating total available food for oyster growth. Environmental parameters including water temperature, salinity and total suspended solid were also monitored for the model. Oyster growth was also monitored by means of measuring shell length and tissue wet weight increase on a monthly basis. Simulation results from the numerical model indicated that chlorophyll a is not a good representative of available food for the oysters in Goseong Bay. In contrast, available food in the water column measured by filtration of the organic particles and analyzed in terms of total lipids, carbohydrates and protein was well matched with simulated oyster growth in the Bay which is similar to observed growth. The model also suggested that oysters have relatively low retention efficiency of $50\%$ or less. This result indicates that oysters in the bay utilize only a part of food particle available in the water column, as reported in other studies.

INHIBITION OF BROWNING REACTIONS OCCURRING IN THE STORAGE OF DRIED OYSTER 1. Inhibitors and Treating Conditions (건조굴 저장중의 갈변방지 1. 방지제의 효과와 처리조건)

  • LEE Kang-Ho;CHOI Jin-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제10권1호
    • /
    • pp.11-15
    • /
    • 1977
  • Brownish discoloration develops very rapidly in the storage of dried oyster. This undesirable browning is mainly caused by the series of reactions of sugar-amino condensation, enzymatic oxidation of tyrosine and/or the oxidative rancidity of lipids in the tissue of oyster. Sulfites are commonly used as inhibitors for Maillard type browning reactions in agricultural products. The inhibitory effect of sulfite treatment on canned oysters was also confirmed in some investigations. The results suggested that sulfites not only work on blocking tile amadori rearrangement but also on the reduction of free tyrosine which retards the progress of enzymatic oxidation of tyrosine tyrosinase. In this paper, the effect of sodium sulfite treatment on the reduction of reducing sugar and free tyrosine as a function i)f browning inhibition in oyster was tested and other treatment with glucose-oxidase and yeast were also applied. In preparation of samples, fresh oysters were soaked in sodium sulfite solution by various concentration for different treating times, washed in running water to remove the sulfite residue, and finally dried in the shade. In the result, the treatment of sodium sulfite was certainly effective on the reduction of both free tyrosine and reducing sugars in fresh oyster. The best results were obtained by the treatment of 0.5M sodium sulfite solution for 60 minutes each for soaking and washing. Treatment with, glucose-oxidase and yeast solutions, however, did appear somewhat effective but it required so much time for a certain effect that it seemed not practically applicable.

  • PDF

Detection of Vibrio vulnificus by Real-Time PCR targeted to rpoS gene (rpoS 유전자를 대상으로 하는 Real-Time PCR에 의한 Vibrio vulnificus 검출)

  • Kim, Dong-Gyun;Ahn, Sun-Hee;Bae, Ju-Yoon;Kong, In-Soo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • 제2권4호
    • /
    • pp.263-266
    • /
    • 2007
  • Vibrio vulnificusis a causative agent of serious diseases in humans resulting from the contact of wound with seawater or consumption of raw seafood. Several studies aimed at detecting V. vulnificus have targeted vvh as a representative virulence toxin gene belonging to the bacterium. In this study, we targeted the rpoS gene, a general stress regulator, to detect V. vulnificus. PCR specificity was identified by amplification of 8 V. vulnificus templates and by the loss of a PCR product with 36 non-V. vulnificus strains. The PCR assay had the 273-bp fragment and the sensitivity of 10 pg DNA from V. vulnificus. SYBR Green I-based real-time PCR assay targeting the rpoS gene showed a melting temperature of approximately $84^{\circ}C$ for V. vulnificus strains. The minimum level of detection by real-time PCR was 2 pg of purified genomic DNA, or $10^3$ V. vulnificus cells from pure cultured broth and $10^3$ cells in 1g of oyster tissue homogenates. These data indicate that real-time PCR is a sensitive, species-specific, and rapid method for detecting this bacterium using the rpoS gene in pure cultures and in infected oyster tissues.

  • PDF

Optimal Fermentation Conditions for Processing of the Salt-Fermented Oysters in Olive Oil (기름담금 염장발효 굴의 가공을 위한 최적 염장발효조건)

  • Kim, Seok-Moo;Kang, Su-Tae;Kim, Young-A;Choe, Dong-Jin;Nam, Gee-Ho;Oh, Kwang-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제33권8호
    • /
    • pp.1390-1397
    • /
    • 2004
  • The optimal fermentation conditions for processing of the salt-fermented oysters in olive oil were examined. The penetration of salt into oyster meat was completed within 1 day after brine salting or dry salting. The amino nitrogen contents of salt-fermented oyster was increased slightly up to the 20th day during salt-fermentation at 5$\pm$1$^{\circ}C$. The hardness of the salt-fermented oysters was increased up to the 10th day, and then softened gradually by some parts of the tissue were hydrolyzed. The viable cell counts didn't change overall at the non-salt medium, but it was increased definitely up to the 15th day at the 2.5% salt medium during salt-fermentation. Based on the results of sensory tests, the salt-fermented oyster at 5$\pm$1$^{\circ}C$ for 15∼20 days showed the best flavorous condition. The optimal condition for the salt-fermented oyster in olive oil was to ripen at 5$\pm$1$^{\circ}C$ for 15 days by brine-salting in saturated saline solution-oyster sauce (2:1).