• Title/Summary/Keyword: oxygen transport

Search Result 373, Processing Time 0.026 seconds

Numerical study of oxygen transport characteristics in lead-bismuth eutectic for gas-phase oxygen control

  • Wang, Chenglong;Zhang, Yan;Zhang, Dalin;Lan, Zhike;Tian, Wenxi;Su, Guanghui;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2221-2228
    • /
    • 2021
  • One-dimensional oxygen transport relation is indispensable to study the oxygen distribution in the LBE-cooled system with an oxygen control device. In this paper, a numerical research is carried out to study the oxygen transport characteristics in a gas-phase oxygen control device, including the static case and dynamic case. The model of static oxygen control is based on the two-phase VOF model and the results agree well with the theoretical expectation. The model of dynamic oxygen control is simplified and the gas-liquid interface is treated as a free surface boundary with a constant oxygen concentration. The influences of the inlet and interface oxygen concentration, mass flow rate, temperature, and the inlet pipe location on the mass transfer characteristics are discussed. Based on the results, an oxygen mass transport relation considering the temperature dependence and velocity dependence separately is obtained. The relation can be used in a one-dimensional system analysis code to predict the oxygen provided by the oxygen control device, which is an important part of the integral oxygen mass transfer models.

Gas Separation Membranes Containing $Re_6Se_8(MeCN)_6^{2+}$ Cluster-Supported Cobalt-Porphyrin Complexes

  • Park Su Mi;Won Jongok;Lee Myung-Jin;Kang Yong Soo;Kim Se-Hye;Kim Youngmee;Kim Sung-Jin
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.598-603
    • /
    • 2004
  • Cellulose nitrate (CN) composite membranes, containing cobalt porphyrin (CoP) complexes self-assembled within nanometer-sized rhenium clusters (ReCoP), have been prepared and their oxygen and nitrogen gas perme­abilities were analyzed. The solubility of ReCoP and the characteristics of the corresponding composite membranes were analyzed using a Cahn microbalance, FT-IR spectroscopy, wide-angle X-ray scattering, and differential scanning calorimetry. The nitrogen permeability through the CN composite membranes decreased upon addition of ReCoP and CoP, which implies that the presence of these oxygen carrier complexes affects the structure of the polymer matrix. The oxygen permeability through the composite membranes containing small quantities of ReCoP decreased, but it increased upon increasing the concentration. The oxygen gas transport was affected by the matrix at low ReCoP concentrations, but higher concentrations of ReCoP increased the oxygen permeability as a result of its reversible and specific interactions with oxygen, effectively realizing ReCoP carrier-mediated oxygen transport.

Reverse-bias Leakage Current Mechanisms in Cu/n-type Schottky Junction Using Oxygen Plasma Treatment

  • Kim, Hogyoung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.113-117
    • /
    • 2016
  • Temperature dependent reverse-bias current-voltage (I-V) characteristics in Cu Schottky contacts to oxygen plasma treated n-InP were investigated. For untreated sample, current transport mechanisms at low and high temperatures were explained by thermionic emission (TE) and TE combined with barrier lowering, respectively. For plasma treated sample, experimental I-V data were explained by TE or TE combined with barrier lowering models at low and high temperatures. However, the current transport was explained by a thermionic field emission (TFE) model at intermediate temperatures. From X-ray photoemission spectroscopy (XPS) measurements, phosphorus vacancies (VP) were suggested to be generated after oxygen plasma treatment. VP possibly involves defects contributing to the current transport at intermediate temperatures. Therefore, minimizing the generation of these defects after oxygen plasma treatment is required to reduce the reverse-bias leakage current.

Estimation of the Effect of Grain Boundary Diffusion on Microstructure Development in Magnetite Bi-crystal under Oxygen Chemical Potential Gradient at 823 K

  • Ueda, Mitsutoshi;Maruyama, Toshio
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • Mass transport near grain boundary in a magnetite bi-crystal has been estimated at 823 K by finite element method. Mass transport near grain boundary strongly depends on the diffusivities along grain boundary. If grain boundary diffusion has the same oxygen activity dependence as lattice diffusion, there is no mass transport between grains and grain boundary. On the other hand, mass transport between grains and grain boundary is observed in the case that grain boundary diffusion has different oxygen activity dependence.

Facilitated Transport of Oxygen in Copolymer Membranes of Styrene and 4-Vinylpyridine Containing Cobalt Schist Base Carrier : Effect of Membrane Thickness and Carrier Concentration

  • Hong, Jae-Min;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • The valiclity of the simple mathematical model for facilitated transport in a solid state membrane developed previously has been examined againsts the carrier concentration and membrane thick-ness. Membranes are prepared with copolymer of styrene and 4-vinylpyridine as a matrix and Co(salen) as a carrier. 4-Vinylpyridine is incorporated to provide the coordination site for Co(salen) carrier. Oxygen permeability through the facilitated transport membrane is linearly increased with the square of its thick-ness, as predicted by the mathematical model. However, the oxygen permeability does not increase linearly with the carrier concentration. This seems to be due to the deactivation of the carrier by dimerization at high carrier concentrations as well as the reduced chain mobility by coordination of bulky Co(salen) carrier.

  • PDF

Effect of Bradykinin on Oxygen Consumption in the Distal Tubule and Cortical Collecting Tubule of Rat (흰쥐 원위세뇨관과 피질집합관의 산소소비량에 대한 Bradykinin의 영향)

  • Lee, Seok-Yong;Cho, Kyu-Chul
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.161-166
    • /
    • 1990
  • Infusion of bradykinin (BK) into the renal arteries increases sodium excretion. However, it is not clear whether natriuresis results from the renal hemodynamic effects or from the direct effect on renal tubular sodium transport. Therefore, we examined the effects of BK on the transport-dependent oxygen consumption in the distal tubule (DT) and cortical collecting tubule (CCT) of deoxycorticosterone-treated rats. BK inhibited oxygen consumption in a dose-dependent way with a maximal reduction at $0.1\;{\mu}M$ BK. The inhibitory effect of BK was not present in the absence of sodium or in the presence of ouabain (1 mM). These data imply that the inhibitory effect of BK is restricted to the sodium transport-dependent oxygen consumption. We also investigated the relationship between the effect of BK on oxygen consumption and arachidonic acid metabolism. Mepacrine $(10\;{\mu}M)$, an inhibitor of membrane phospholipases, prevented the inhibitory effect of BK, but indomethacin (0.5 mM) didn't. These results suggest that BK decreases the sodium transport-related oxygen consumption in the rat DT and/or CCT, and that it may be mediated by products of enzymes other than cyclooxygenase.

  • PDF

Effect of Simetryne on Chloroplast-Mediated Electron Transport and Photoacoustic Signal (엽록체의 전자전달과 광음향 신호에 미치는 Simetryne의 영향)

  • 김현식
    • Journal of Plant Biology
    • /
    • v.31 no.3
    • /
    • pp.205-215
    • /
    • 1988
  • The effects of simetryne on light induced electron transport and phosphorylation in isolated spinach (Spinacia oleracea L.) chloroplasts were investigated in comparison with sencor and DCMU. Simetryne, like sencor and DCMU, completely, inhibited PSII electron transport and phosphoryltion with 10-6 M treatment but did not inhibit PSI electron transport. Interference with the electron transport pathway was evidenced by the greater sensitivity of oxygen evolution and uptake than phosphorylation. The following order of decreasing inhibitory effectiveness was exihibited; DCMU>simetryne>sencor. The photoacoustic technique was also used to monitor the relative photosynthetic activity in the leaves treated with the herbicides (simetryne, sencor or DCMU) in vivo and in vitro. Photoacoustic measurements on intact leaves provide quantitative information on two related aspects of the photosynthetic process, namely, photochemical energy storage and oxygen evolution. The relative photoacoustic signal of leaves treated with the herbicides showed low level in 21 Hz, but high level in 380 Hz and on isolated chloroplasts (both 21 Hz and 380 Hz) in comparison with that of the untreated leaves. These results suggest that some of photochemical energy is converted into the heat owing to the inhibition of electorn transport pathway by the herbicides.

  • PDF

The Effect of LSC/GDC (50 : 50 vol%) Active Layers on Oxygen Transport Properties of LSCF/GDC (20 : 80 vol%) Dual-phase Membrane (LSC/GDC (50 : 50 vol%) 활성층이 LSCF/GDC (20 : 80 vol%) 복합 분리막의 산소투과 거동에 미치는 영향)

  • Cha, Da-Som;Yoo, Chung-Yul;Joo, Jong Hoon;Yu, Ji Haeng;Han, Moon-Hee;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.367-374
    • /
    • 2014
  • In the present study, disc-type LSCF/GDC (20 : 80 vol%) dual-phase membranes having porous LSC/GDC (50 : 50 vol%) active layers were prepared and effect of active layers on oxygen ion transport behavior was investigated. Introduction of active layers improved drastically oxygen flux due to enhanced electron conductivity and oxygen surface exchange activity. As firing temperature of active layer increased from $900^{\circ}C$ to $1000^{\circ}C$, oxygen flux increased due to improved contact between membrane and active layer or between grains of active layer. The enhanced contact would improve oxygen ion and electron transports from active layer to membrane. Also, as thickness of active layer increased from 10 to $20{\mu}m$, oxygen flux decreased since thick active layer rather prevented oxygen molecules diffusing through the pores. And, STF infiltration improved oxygen flux due to enhanced oxygen reduction reaction rate. The experimental data announces that coating and property control of active layer is an effective method to improve oxygen flux of dual-phase oxygen transport membrane.

Influence of Hydrogen and Oxygen on the Thermotransport of Hydrogen in Modified Zircaloy-4 (Modified Zircaloy-4에서 수소의 Thermotransport에 있어서 수소와 산소의 보고)

  • Kim, Hyun-Sook;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.473-477
    • /
    • 2003
  • The hydrogen redistribution induced by thermotransport at temperatures likely to be encountered in nuclear power reactors (300-$340^{\circ}C$) was investigated in modified Zircaloy-4 alloys. Modified Zircaloy-4 alloys were prepared by altering the chemical composition of Zircaloy-4; the oxygen content of Zircaloy-4 (0.1 wt%) was increased to 0.2, 0.5 and 1.0 wt%. The heat of transport ($Q^{*}$ ) for hydrogen was measured by changing the initial hydrogen and oxygen concentrations. It was found that the heat of transport was not affected by increases in the initial hydrogen concentration from 63.3 to 91.7 ppm. However, the value of $Q^{Q}$ decreased from 6.8 to 4.5 ㎉/mol as the initial oxygen concentration was increased from 0.2 to 1.0 wt%.

Defect Chemistry of the Mixed Conducting Cage Compound Ca12Al14O33

  • Janek, J.;Lee, D.K.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • The electrical transport properties of mayenite ($Ca_{12}Al_{14}O_{33}$ or $12CaO{\cdot}7Al_2O_3$; mostly abbreviated as $C_{12}A_7$) can be controlled in a wide range by varying the oxygen deficiency: At high temperatures mayenite becomes either an oxygen solid electrolyte, a mixed ionic/electronic conductor or an inorganic electride with metal-like properties upon chemical reduction (removing oxygen). The underlying defect chemistry can be understood on the basis of a relatively simple model-despite the complex cage structure: A point defect model based on the assumption that the framework $[Ca_{12}Al_{14}O_{32}]^{2+}$ acts as a pseudo-donor describes well the high temperature transport properties. It accounts for the observed conductivity plateau at higher oxygen activities and also describes the experimentally observed oxygen activity dependence of the electronic conductivity with -1/4 slope at temperatures between 800 and $1000^{\circ}C$. Doping effects in mayenite are still not well explored, and we review briefly the existing data on doping by different elements. Hydration of mayenite plays a crucial role, as Mayenite is hygroscopic, which may be a major obstacle for technical applications.