• Title/Summary/Keyword: oxygen toxicity

Search Result 378, Processing Time 0.027 seconds

Presumptive Role of Neutrophilic Oxidative Stress in Oxygen-induced Acute Lung Injury in Rats (흰쥐에서 고농도 산소 흡입에 의한 급성 폐손상 시 호중구성 산화성 스트레스의 역할)

  • Moon, Yongsuck;Kim, Jihye;Lee, Young Man
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.6
    • /
    • pp.464-470
    • /
    • 2008
  • Background: This study examined the role of neutrophilc oxidative stress in an $O_2-induced$ acute lung injury (ALI). Methods: For 48 h, experimental rats were exposed to pure oxygen (normobaric hyperoxia) in a plastic cage. Forty-eight hours after $O_2$ breathing, the rats were sacrificed and the parameters for ALI associated with neutrophilic oxidative stress were assessed Results: Normobaric pure oxygen induced ALI, which was quite similar to ARDS. The $O_2-induced$ neutrophilic oxidative stress was identified by confirming of the increase in lung myeloperoxidase, BAL neutrophils, malondialdehyde (MDA), cytosolic phospholipase $A_2$ ($cPLA_2$) activity in the lung, histological changes and BAL cytospin morphology. Conclusion: In part, ALI-caused by oxygen is affected by neutrophils especially by the generation of free radicals.

Mechanisms and Prevention for Metabolism and Toxicity of Korean Herbal-Medicine (한약재의 대사 및 독성의 기전과 예방)

  • Park, Yeong-Chul;Kim, Jong-Bong;Lee, Sun-Dong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.12 no.1
    • /
    • pp.73-87
    • /
    • 2008
  • In recent years, there has been a globally increasing application of herbal medicines and dietary supplements to treat various chronic diseases and to promote health. However, there are increasing clinical reports on the organ toxicities associated with consumption of herbal medicines. In general, most xenobiotics are metabolized by Phase I reaction(the main enzyme : cytochrome P450) and Phase II reaction. However, reactive oxygen species, free radicals and electrophils are produced inevitably during xenobiotics metabolism. These toxic species and metabolites are increased whenever the endogenous substances and enzymes for Phase II reaction not available. In addition, herbal-drug interactions are pharmacokinetic, with most actually or theoretically affecting the metabolism of the affected product by way of the cytochrome P450 enzymes. This review updated the knowledge on metabolic activation of herbal components and its clinical and toxicological implications. Also, the possible way for preventing the side-effects by herbal-medicine use was suggested.

  • PDF

Laccase Fermentation of Clove Extract Increases Content of Dehydrodieugenol, Which Has Neuroprotective Activity against Glutamate Toxicity in HT22 Cells

  • Lee, Han-Saem;Yang, Eun-Ju;Lee, Taeho;Song, Kyung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.246-254
    • /
    • 2018
  • Enzyme fermentation is a type of food processing technique generally used to improve the biological activities of food and herbal medicines. In this study, a Syzygii Flos (clove) extract was fermented using laccase derived from Trametes versicolor (LTV). The fermented clove extract showed greater neuroprotective effects against glutamate toxicity on HT22 than the non-fermented extract did. HPLC analysis revealed that the eugenol (1) and dehydrodieugenol (2) contents had decreased and increased, respectively, after fermentation. The content of 2 peaked at 1 h after fermentation to $103.50{\pm}8.20mg/g_{ex}$ (not detected at zero time), while that of 1 decreased to $79.54{\pm}4.77mg/g_{ex}$ ($185.41{\pm}10.16mg/g_{ex}$ at zero time). Compound 2 demonstrated promising HT22 neuroprotective properties with inhibition of $Ca^{2+}$ influx, the overproduction of intracellular reactive oxygen species, and lipid peroxidation. In addition, LTV showed the best fermentation efficacy compared with laccases derived from Pleurotus ostreatus and Rhus vernicifera.

Anticancer Effect of Houttuynia cordata Extract on Cancered ICR Mouse and L1210 Cells With Changes of SOD and GPx Activities (어성초 추출물의 ICR생쥐와 L1210 세포에 대한 항암작용 및 SOD, GPx 효소활성변화)

  • 하혜경;정대영;박시원
    • YAKHAK HOEJI
    • /
    • v.48 no.4
    • /
    • pp.219-225
    • /
    • 2004
  • The present investigation was undertaken to examine the anticancer activity of the methanol extract from Houttuynia cordata on ICR mouse with induced abdominal cancer and L1210 cancer cells. When the methanol extract of Houttuynia cordata (10∼200 $\mu\textrm{g}$/$m\ell$) was administered orally to ICR mouse with abdominal cancer, 47.8% of the best life prolonging effect was obtained. In case of cytotoxicity study (inhibition of cell proliferation) of Houttuynia cordata extract against L1210 cells, $IC_{50}$/ was found to be 62.8 $\mu\textrm{g}$/$m\ell$. In contrast to such considerable toxicity against cancer cell line, the toxicity demonstrated by the identical extract against normal lymphocytes was very meagre as shown to be < 5% compared with 86.5% in case of L1210 cells at the same condition. To get an insight into the reaction mechanism undelying the anticancer activity, $O_2$ion quantity and antioxidant enzyme activities such as superoxide dismiutase (SOD) and glutathione peroxidase (GPx) of L1210 cells in the presence of Houttuynia cordata extract were measured. The increased values of SOD and GPx enzyme activities in addition to the augmented generation of $O_2$ ion in L1210 cells implied that the reactive oxygen species induding $O_2$ion which were presumably induced by Houttuynia cordata extract might have participated in the process of L1210 cells cytotoxicity.

Involvement of Caenohabditis elegans MAPK Signaling Pathways in Oxidative Stress Response Induced by Silver Nanoparticles Exposure

  • Roh, Ji-Yeon;Eom, Hyun-Jeong;Choi, Jin-Hee
    • Toxicological Research
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • In the present study, toxicity of silver nanoparticles (AgNPs) was investigated in the nematode, Caenohabditis elegans focusing on the upstream signaling pathway responsible for regulating oxidative stress, such as mitogen-activated protein kinase (MAPK) cascades. Formation of reactive oxygen species (ROS) was observed in AgNPs exposed C.elegans, suggesting oxidative stress as an important mechanism in the toxicity of AgNPs towards C. elegans. Expression of genes in MAPK signaling pathways increased by AgNPs exposure in less than 2-fold compared to the control in wildtype C.elegans, however, those were increased dramatically in sod-3 (gk235) mutant after 48 h exposure of AgNPs (i.e. 4-fold for jnk-1 and mpk-2; 6-fold for nsy-1, sek-1, and pmk-1, and 10-fold for jkk-1). These results on the expression of oxidative stress response genes suggest that sod-3 gene expression appears to be dependent on p38 MAPK activation. The high expressions of the pmk-1 gene 48 h exposure to AgNPs in the sod-3 (gk235) mutant can also be interpreted as compensatory mechanisms in the absence of important stress response genes. Overall results suggest that MAPK-based integrated stress signaling network seems to be involved in defense to AgNPs exposure in C.elegans.

A Technical Description on The Safety Aspects related To Gas Suppression Fire Protection System (가스계 소화시스템관련 안전기술)

  • 이창욱
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.21-29
    • /
    • 2002
  • With regard to the personnel safety and other safety when the gas suppressants are discharged into the area where occupants exist, the short term and long term effects to the health of people are discussed mainly with the Carbon dioxide agent and Halon Replacement agents system. To gain the benefits of CO2 extinguishing systems while minimizing risk to people serious attention must be given to personnel safety in the design, installation, and maintenance of CO2 systems. Training of personnel is essential. A major factor in the use of a clean agent fire suppressant in a normally occupied area is toxicity. While all halocarbon agents are tested for long-term health hazards, the primary endpoint is acute or short-term exposure, The primary acute toxicity effects of the halocarbon agents described here are anesthesia and cardiac sensitization. For inert gases, the primary physiological concern is reduced oxygen concentration.

  • PDF

Induction of Oxidative Stress by Hexavalent Chromium in Human Bronchial Epithelial Cells (BEAS-2B) (배양 기관지 상피세포(BEAS-2B cells)에서 6가 크롬에 의한 산화적 스트레스)

  • Park, Eun-Jung;Kang, Mi-Sun;Kim, Dae-Seon;Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.4 s.55
    • /
    • pp.357-363
    • /
    • 2006
  • Chromium compounds are widely used in diverse industries including pigment manufacturing, painting, metal plating and leather tanning. With the wide uses of chromium, various adverse effects of the compounds on the environment and human health have been reported. Among them, hexavalent chromium [Cr (VI)], which is a carcinogenic heavy metal, has been widely studies. Epidemiological investigations have shown that respiratory cancers had been found in workers who had been occupationally exposed to Cr (VI). In this study, cell toxicity and induction of reactive oxygen species (ROS) by Cr (VI) (1, 2, 4, $8{\mu}M$) in cultured human bronchial epithelial cells were investigated. Exposure of the cells to Cr (VI) led to cell death, ROS increase, and cytosolic caspase-3 activation. The ROS increase was related with the decreased level of GSH. Chromatin condensation and fragmentation were occurred by Cr (VI) when evaluated by DAPI staining or agarose gel electrophoresis of the extracted DNA. Expression of ROS related genes including glutathione S-transferase, heme oxygenase-1, metallothionein were significantly induced in Cr (VI) treated cells. This result suggests the toxicity in cultured cells by Cr (VI) was expressed through the apoptotic process with ROS induction.

Comparative In Vitro Toxicity Study of Docetaxel and Nanoxel, a Docetaxel-Loaded Micellar Formulation Using Cultured and Blood Cells

  • Do, Van Quan;Park, Kwang-Hoon;Park, Jung-Min;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.201-207
    • /
    • 2019
  • Nanoxel-$PM^{TM}$ (Nanoxel) is a docetaxel-loaded methoxy-poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-PDLLA). This newly developed and marketed nanoformulation exhibits an improved pharmacokinetic profile, efficacy, and safety. Although the safety of Nanoxel to docetaxel as well as its bioequivalence must be clinically confirmed, all biological activities have not been examined in in vitro or in vivo studies. Here, the toxicity in a cultured cell system and the effects on blood cells were tested with Nanoxel and docetaxel. The in vitro cytotoxicity of Nanoxel was found to be comparable to or slightly lower than that of docetaxel depending on the concentrations tested or the cell types. Neither docetaxel nor Nanoxel induced erythrocytes hemolysis and produced reactive oxygen species up to $100{\mu}M$. However, Nanoxel was able to enhance the aggregatory response of platelets to collagen, whereas docetaxel attenuated such aggregation in a range of $50-100{\mu}M$, while thrombin-induced aggregation was not affected by either of them. Docetaxel or Nanoxel did not alter basal level of $Ca^{2+}$ and 5-hydroxytryptamine-evoked $Ca^{2+}$ transient in vascular smooth muscle cells. These results suggest that the mPEG-PDLLA micellar formulation alters the toxicological properties of docetaxel, and that extra cautions are needed when evaluating the safety of nanomedicine.

Effects of Suspended Solid and Cadmium on the Shallow-sea Ecosystem II. Acute and Chronic Toxicity of Cadmium to a Herbivorous Copepod, Tigriopus japonicus (천해역 먹이망 생태계에 대한 무기부유입자와 카드뮴의 영향 II. Tigriopus japonicus에 대한 카드뮴의 급성 및 만성독성)

  • CHUNG Ee-Yung;SHIN Yun Kyung;YIH Wonho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.1
    • /
    • pp.124-133
    • /
    • 1996
  • A herbivorous copepod, Tigriopus japonicus, was tested to study its acute and chronic responses to Cd tonicity. Under $20^{\circ}C,\;96hr-LC_{50}$ of T. japonicus in medium with $32\%_{\circ},\;26\%_{\circ},\;and\;18\%_{\circ}$ salinity were 11.1 ppm, 13.7 ppm, and 9.7 ppm, respectively. The $96hr-LC_{50}$ in medium with $32\%_{\circ},\;26\%_{\circ},\;and\;18\%_{\circ}$ salinity increased to 21.6 ppm, 15.0 ppm, and 11,0 ppm, respectively under $10^{\circ}C$ condition. Oxygen consumption rates during 96hrs exposure to Cd toxicity decreased more sharply at $20^{\circ}C$ than those at $10^{\circ}C$. Survival rate and $250dys-LC_{50}$ of T. japonicus in medium with $32\%_{\circ}$ salinity, in concentration of Cd 4 ppm were $5\%$ and 0.05 ppm, respectively under $10^{\circ}C$, and $0\%$ and 0.20 ppm under $20^{\circ}C$. It was that the copepod selectively feed on Skeletonema costatum, Nitzschia pungens, N. seriata, and Rhizosolenia hebetata f. semispina.

  • PDF

Effects of PCBs (Polychlorinated Biphenyls) on Energy Budget in Mysid, Neomysis awatschensis II. Effects of PCBs on Energy Budget in Mysid, Neomysis awatschensis (곤쟁이, Neomysis awatschensis의 에너지수지에 미치는 PCBs의 영향 II. 에너지수지에 미치는 PCBs의 영향)

  • CHIN Pyung;SHIN Yun-Kyung;JEON Eun-Mi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.104-108
    • /
    • 1998
  • Analysis of energy budget in Neomysis awatschensis exposed to PCB toxicity was carried out by measurement of bioassay, growth, oxygen consumption, nitrogen excretion at 10 and $20^{\circ}C$. Energy contents of the body, molted exoskeleton and eggs, which measured to understand used energy for growth, molt and oxygen consumption were 5.52cal/mg, 2.17 cal/mg and 6.15 cal/mg, respectively. Feeding energies at $10^{\circ}C$ were 3.755ca1 in control group and 3.420 cal at 2.0 ppb concentration, of them, $70.19\%$ and $67.53\%$ of their energies were assimilated. At $20^{\circ}C$, feeding energies were 5.998 cal in control group and 4.166 cal at 2.0 ppb concentration. The assimilation efficiency of the mysid estimated by ash-ratio method ranged between $11.5\~67.5\%$ and $73.4\~70.5\%$ with PCB toxicity at $10^{\circ}C$ and $20^{\circ}C$ respectively. Energy used by respiration of total assimilated energy was $45.18\%$ in control group and $62.27\%$ in 2.0 pub concentration at $20^{\circ}C$, and energy used by metabolism was high 2.0 ppb concentration than control group.

  • PDF