• 제목/요약/키워드: oxygen evolution

검색결과 259건 처리시간 0.031초

중공 ZIF를 이용한 RuO2/h-Co3O4 촉매의 합성 및 산소 발생 반응으로의 활용 (Synthesis of RuO2/h-Co3O4 Electrocatalysts Derived from Hollow ZIF and Their Applications for Oxygen Evolution Reaction)

  • 구윤모;이영빈;임경민;김진수
    • 공업화학
    • /
    • 제34권2호
    • /
    • pp.180-185
    • /
    • 2023
  • 물의 전기 분해 효율을 향상시키기 위해 산소발생반응(OER)의 반응 속도를 가속화하며 고성능과 장기 안정성을 가진 OER 전기촉매 개발이 필수적이다. 본 연구에서는 고효율의 OER 전기촉매를 합성하기 위해 중공 금속-유기골격체 (MOF)로부터 유도된 루테늄-코발트 산화물 촉매를 개발하였다. 합성된 촉매는 루테늄의 표면 노출을 증대시킴으로 낮은 Tafel 기울기와 10 mA/cm2의 전류밀도에서 386 mV의 낮은 과전위가 관찰되었다. 또한 상용 RuO2 촉매 대비 높은 질량 활성과 안정성을 보여, 귀금속 촉매를 대체할 수 있을 것으로 기대된다.

Synergistically Enhanced Oxygen Evolution Catalysis with Surface Modified Halloysite Nanotube

  • Hyeongwon Jeong;Bharat Sharma;Jae-ha Myung
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.96-104
    • /
    • 2023
  • Synergistically increased oxygen evolution reaction (OER) of manganese oxide (MnO2) catalyst is introduced with surface-modified halloysite nanotube (Fe3O4-HNTs) structure. The flake shaped MnO2 catalyst is attached on the nanotube template (Fe3O4-HNTs) by series of wet chemical and hydrothermal method. The strong interaction between MnO2 and Fe3O4-HNTs maximized active surface area and inter-connectivity for festinate charge transfer reaction for OER. The synergistical effect between Fe3O4 layer and MnO2 catalyst enhance the Mn3+/Mn4+ ratio by partial replacement of Mn ions with Fe. The relatively increased Mn3+/Mn4+ ratio on MnO2@FHNTs induced 𝜎* orbital (eg) occupation close to single electron, improving the OER performances. The MnO2@FHNTs catalyst exhibited the reduced overpotential of 0.42 V (E vs. RHE) at 10 mA/cm2 and Tafel slope of (99 mV/dec), compared with that of MnO2 with unmodified HNTs (0.65 V, 219 mV/dec) and pristine MnO2 (0.53 V, 205 mV/dec). The present study provides simple and innovative method to fabricate nano fiberized OER catalyst for a broad application of energy conversion and storage systems.

Evolution, Fields of Research, and Future of Chemical-Looping Combustion (CLC) process: A Review

  • Shahrestani, Masoumeh Moheb;Rahimi, Amir
    • Environmental Engineering Research
    • /
    • 제19권4호
    • /
    • pp.299-308
    • /
    • 2014
  • This study presents a review on Chemical looping combustion (CLC) development, design aspects and modeling. The CLC is in fact an unmixed combustion based on the transfer of oxygen to the fuel by a solid oxygen carrier material avoiding the direct contact between air and fuel. The CLC process is considered as a very promising combustion technology for power plants and chemical industries due to its inherent capability of $CO_2$ capturing, which avoids extra separation costs of the of $CO_2$ from the rest of flue gases. This review covers the issues related to oxygen carrier materials. The modeling works are reviewed and different aspects of modeling are considered, as well. The main drawbacks and future research and prospects are remarked.

해수 수전해 시스템 및 촉매 연구 개발 동향 (Research and Development Trends in Seawater Electrolysis Systems and Catalysts)

  • 정윤성;;;김태근
    • 공업화학
    • /
    • 제34권6호
    • /
    • pp.567-575
    • /
    • 2023
  • 물의 전기 분해는 효과적인 그린 수소를 생산하기 위한 유망한 기술 중 하나로서 활발한 연구가 이루어지고 있다. 수전해 시스템의 원료로 해수를 직접 사용하게 되면 지구상에 있는 물의 약 97%를 해수가 차지하고 있으므로, 기존 담수 원료의 제한성에 대한 문제를 해결할 수 있다. 동시에 풍부한 부생 원료를 얻을 수 있는데, 그 성분과 pH 환경에 따라 전기 분해 과정에서 생성되는 Cl2, ClO-, Br2 및 Mg(OH)2 등이 대표적이다. 성공적인 해수 수전해 시스템 개발과 이에 필수적인 산소발생반응(oxygen evolution reaction, OER)과 수소발생반응(hydrogen evolution reaction, HER) 촉매를 개발하기 위해서는 해수 환경에서 일어나는 반응의 원인과 결과에 대해 파악할 필요가 있다. 따라서 본 논문에서는 해수 수전해 시스템의 반응 메커니즘과 특징 및 애노드와 캐소드 전극에 사용되는 전기화학 촉매들의 연구 개발 동향에 대해 살펴보고자 한다.

대기오염 물질 처리에 의한 오이 장해와 에탄 생성 (Ethane Evolution in Cucumber Plants by Air Pollutants in Relation to Plants Injury)

  • 배공영
    • 한국환경농학회지
    • /
    • 제17권2호
    • /
    • pp.127-131
    • /
    • 1998
  • $O_3,$ $SO_2,$ $Na_2SO_3$ 및 UV-B에 의한 식물피해가 활성산소에 의한 것인지 밝히고자 지질곽산의 산물인 에탄을 측정하였다.에탄은 $SO_2$를 제외한 모든 처리구에서 피해가 출현하는 시점으로부터 촉진되어 대기오염으로 인한 식물피해에는 에탄의 생성이 밀접히 관계함을 알 수 있었다.또한 가스의 단독처리보다는 복합처리에서 에탄이 많이 생성되어 복합스트레스에 의해 식물은 더욱더 피해가 크게 나타남을 알 수 있었다.대기오염으로 유도되는 에탄은 암조건에서 생산되지 않았지만 광조건에서 크게 촉진되었을 뿐만 아니라 활성산소 소거제에 의해서도 큰 감소를 나타내 에탄 생성에는 활성산소가 크게 작용하는 것으로 생각되었다.

  • PDF

Micro Emulsion Synthesis of LaCoO3 Nanoparticles and their Electrochemical Catalytic Activity

  • Islam, Mobinul;Jeong, Min-Gi;Ghani, Faizan;Jung, Hun-Gi
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권4호
    • /
    • pp.121-130
    • /
    • 2015
  • The micro emulsion method has been successfully used for preparing perovskite LaCoO3 with uniform, fine-shaped nanoparticles showing high activity as electro catalysts in oxygen reduction reactions (ORRs). They are, therefore, promising candidates for the air-cathode in metal-air rechargeable batteries. Since the activity of a catalyst is highly dependent on its specific surface area, nanoparticles of the perovskite catalyst are desirable for catalyzing both oxygen reduction and evolution reactions. Herein, LaCoO3 powder was also prepared by sol-gel method for comparison, with a broad particle distribution and high agglomeration. The electro catalytic properties of LaCoO3 and LaCoO3-carbon Super P mixture layers toward the ORR were studied comparatively using the rotating disk electrode technique in 0.1 M KOH electrolyte to elucidate the effect of carbon Super P. Koutecky-Levich theory was applied to acquire the overall electron transfer number (n) during the ORR, calculated to be ~3.74 for the LaCoO3-Super P mixture, quite close to the theoretical value (4.0), and ~2.7 for carbon-free LaCoO3. A synergistic effect toward the ORR is observed when carbon is present in the LaCoO3 layer. Carbon is assumed to be more than an additive, enhancing the electronic conductivity of the oxide catalyst. It is suggested that ORRs, catalyzed by the LaCoO3-Super P mixture, are dominated by a 2+2-electron transfer pathway to form the final, hydroxyl ion product.

Oxygen Isotope Study of Mulgeum, Yangseong, Maeri and Kimhae Iron Ore Deposits in Gyeongnam Province, Korea

  • Woo, Young-Kyun;Savin, Samuel M.
    • 한국지구과학회지
    • /
    • 제23권1호
    • /
    • pp.97-104
    • /
    • 2002
  • Mulgeum, Yangseong, Maeri and Kimhae iron ore deposits in Gyeongnam Province are hydrothermal skarn type magnetite ore deposits in propylitized andesitic rock near the contact with Cretaceous Masanite. Symmetrical zoned skarns are commonly developed around the magnetite veins. The skarn zones away from the vein are quartz-garnet skarn, epidote skarn and epidote-orthoclase skarn. Oxygen isotope analyses of coexisting minerals from andesitic rock, Masanite and major skarn zones, and of magnetite, hematite and quartz were conducted to provide the information on the formation temperature, the origin and the evolution of the hydrothermal solution forming the iron ore deposits. Becoming more distant from the ore vein, temperatures of skarn zones represent the decreasing tendency, but most ${\delta}^{18}O$ and ${\delta}^{18}O_{H2O}$ values of skarn minerals represent no variation trend, and also the values are relatively low. Judging from all the isotopic data from the ore deposits, the major source of hydrothermal solution altering the skarn zones and precipitating the ore bodies was magmatic water derived from the deep seated Masanite. This high temperature hydrothermal solution rising through the fissures of propylitized andesitic rock was mixed with some meteoric water, and occurred the extensive isotopic exchange with the propylitized andesitic rock, and formed the skarns. During these processes, the temperature and ${\delta}^{18}O_{H2O}$ value of hydrothermal solution were lowered gradually. At the main stage of iron ore precipitation, because all the alteration was already finished, the new rising hydrothermal solution formed only the magnetite ore without oxygen isotopic exchange with the wall rock.

아연-공기전지용 페롭스카이트 산화물 촉매의 산소환원반응 특성 (Characterization of LaCoO3 Perovskite Catalyst for Oxygen Reduction Reaction in Zn-air Rechargeable Batteries)

  • 선호정;조명연;안정철;엄승욱;박경세;심중표
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.436-442
    • /
    • 2014
  • $LaCoO_3$ powders synthesized by Pechini process were pulverized by planetary ball-milling to decrease particle size and characterized as a catalyst in alkaline solution for oxygen reduction and evolution reaction (ORR & OER). The changes of physical properties, such as particle size distribution, surface area and electric conductivity, were analyzed as a function of ball-milling time. Also, the variations of the crystal structure and surface morphology of ball-milled powders were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically catalytic activities of the intrinsic $LaCoO_3$ powders decreased with increasing ball-milling time, but their electrochemical performance as an electrode improved by the increase of the surface area of the powder.

Rubbish, Stink, and Death: The Historical Evolution, Present State, and Future Direction of Water-Quality Management and Modeling

  • Chapra, Steven C.
    • Environmental Engineering Research
    • /
    • 제16권3호
    • /
    • pp.113-119
    • /
    • 2011
  • This study traces the origin, evolution, and current state-of-the-art of engineering-oriented water-quality management and modeling. Three attributes of polluted water underlie human concerns for water quality: rubbish (aesthetic impairment), stink (ecosystem impairment), and death (public health impairment). The historical roots of both modern environmental engineering and water-quality modeling are traced to the late nineteenth and early twentieth centuries when European and American engineers worked to control and manage urban wastewater. The subsequent evolution of water-quality modeling can be divided into four stages related to dissolved oxygen (1925-1960), computerization (1960-1970), eutrophication (1970-1977) and toxic substances (1977-1990). Current efforts to integrate these stages into unified holistic frameworks are described. The role of water-quality management and modeling for developing economies is outlined.

The Oxygen-Transport System of Polar Fish: The Evolution of Hemoglobin

  • Verde Cinzia;Prisco Guido di
    • Ocean and Polar Research
    • /
    • 제25권4호
    • /
    • pp.617-623
    • /
    • 2003
  • Organisms living in the Arctic and Antarctic regions are exposed to strong constraints, of which temperature is a driving factor. Evolution has led to special adaptations, some with important implications at the biochemical, physiological, and molecular levels. The northern and southern polar oceans have very different characteristics. Tectonic and oceanographic events have played a key role in delimiting the two polar ecosystems and influencing evolution. Antarctica has been isolated and cold longer than the Arctic; its ice sheet developed at least 10 million years earlier. As an intermediate system, the Arctic is a connection between the more extreme, simpler Antarctic system and the very complex temperate and tropical systems. By studying the molecular bases of cold adaptation in polar fish, and taking advantage of the information available on hemoglobin structure and function, we analysed the evolutionary history of the ${\alpha}\;and\;{\beta}globins$ of Antarctic and Arctic hemoglobin using the molecular clock hypothesis as a basis for reconstructing the phylogenetic relationships among species.