DOI QR코드

DOI QR Code

Synergistically Enhanced Oxygen Evolution Catalysis with Surface Modified Halloysite Nanotube

  • Hyeongwon Jeong (Department of Materials Science and Engineering, Incheon National University) ;
  • Bharat Sharma (Department of Materials Science and Engineering, Incheon National University) ;
  • Jae-ha Myung (Department of Materials Science and Engineering, Incheon National University)
  • Received : 2022.11.02
  • Accepted : 2023.01.12
  • Published : 2023.02.28

Abstract

Synergistically increased oxygen evolution reaction (OER) of manganese oxide (MnO2) catalyst is introduced with surface-modified halloysite nanotube (Fe3O4-HNTs) structure. The flake shaped MnO2 catalyst is attached on the nanotube template (Fe3O4-HNTs) by series of wet chemical and hydrothermal method. The strong interaction between MnO2 and Fe3O4-HNTs maximized active surface area and inter-connectivity for festinate charge transfer reaction for OER. The synergistical effect between Fe3O4 layer and MnO2 catalyst enhance the Mn3+/Mn4+ ratio by partial replacement of Mn ions with Fe. The relatively increased Mn3+/Mn4+ ratio on MnO2@FHNTs induced 𝜎* orbital (eg) occupation close to single electron, improving the OER performances. The MnO2@FHNTs catalyst exhibited the reduced overpotential of 0.42 V (E vs. RHE) at 10 mA/cm2 and Tafel slope of (99 mV/dec), compared with that of MnO2 with unmodified HNTs (0.65 V, 219 mV/dec) and pristine MnO2 (0.53 V, 205 mV/dec). The present study provides simple and innovative method to fabricate nano fiberized OER catalyst for a broad application of energy conversion and storage systems.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (G032542411), and by Incheon National University (International Cooperative) Research Grant in 2018.

References

  1. M. Winter and R. J. Brodd, Chem. Rev., 2003, 104(10), 4245-4270. https://doi.org/10.1021/cr020730k
  2. A. A. Gewirth and M. S. Thorum, Inorg. Chem., 2010, 49(8), 3557-3566. https://doi.org/10.1021/ic9022486
  3. B. M. Hunter, H. B. Gray, and A. M. Muller, Chem. Rev., 2016, 116(22), 14120-14136. https://doi.org/10.1021/acs.chemrev.6b00398
  4. F. Lu, M. Zhou, Y. Zhou, and X. Zeng, Small, 2017, 13(45), 1701931.
  5. Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, J. Phys. Chem. Lett., 2012, 3(3), 399-404. https://doi.org/10.1021/jz2016507
  6. M. Fan, X. Liang, H. Chen, and X. Zou, Dalton Trans., 2020, 49, 15568-15573. https://doi.org/10.1039/D0DT02676J
  7. S. Choe, B.-S. Lee, M. K. Cho, H.-J. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Y. Lee, H. S. Park, and J. H. Jang, Appl. Catal. B Environ., 2018, 226, 289-294. https://doi.org/10.1016/j.apcatb.2017.12.037
  8. H. Osgood, S. V. Devaguptapu, H. Xu, J. Cho, and G. Wu, Nano Today, 2016, 11(5), 601-625. https://doi.org/10.1016/j.nantod.2016.09.001
  9. H. Wang, M. Zhou, P. Choudhury, and H. Luo, Appl. Mater. Today, 2019, 16, 56-71. https://doi.org/10.1016/j.apmt.2019.05.004
  10. C. Sun, J. A. Alonso, and J. Bian, Adv. Energy Mater., 2021, 11(2), 2000459.
  11. F. D. Speck, P. G. Santori, F. Jaouen, and S. Cherevko, J. Phys. Chem. C, 2019, 123(41), 25267-25277. https://doi.org/10.1021/acs.jpcc.9b07751
  12. P. F. Smith, B. J. Deibert, S. Kaushik, G. Gardner, S. Hwang, H. Wang, J. F. Al-Sharab, E. Garfunkel, L. Fabris, J. Li, and G. C. Dismukes, ACS Catal., 2016, 6(3), 2089-2099. https://doi.org/10.1021/acscatal.6b00099
  13. Z. M. Chan, D. A. Kitchaev, J. N. Weker, C. Schnedermann, K. Lim, G. Ceder, W. Tumas, M. F. Toney, and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2018, 115(23), E5261-E5268.
  14. R. Frydendal, E. A. Paoli, I. Chorkendorff, J. Rossmeisl, and I. E. L. Stephens, Adv. Energy Mater., 2015, 5(22), 1500991.
  15. P. K. Gupta, A. Bhandari, S. Saha, J. Bhattacharya, and R. G. S. Pala, J. Phys. Chem. C, 2019, 123(36), 22345-22357. https://doi.org/10.1021/acs.jpcc.9b05823
  16. Y. Hang, C. Zhang, X. Luo, Y. Xie, S. Xin, Y. Li, D. Zhang, and J. B. Goodenough, J. Power Sources, 2018, 392, 15-22. https://doi.org/10.1016/j.jpowsour.2018.04.078
  17. J. Shin, J. K. Seo, R. Yaylian, A. Huang, and Y. S. Meng, Int. Mater. Rev., 2020, 65(6), 356-387. https://doi.org/10.1080/09506608.2019.1653520
  18. C. Xu, F. Kang, B. Li, and H. Du, J. Mater. Res., 2010, 25, 1421-1432. https://doi.org/10.1557/JMR.2010.0211
  19. J. Kim, J. S. Kim, H. Baik, K. Kang, and K. Lee, RSC Adv., 2016, 6, 26535-26539. https://doi.org/10.1039/C6RA01091A
  20. H. Zhu, P. Zhang, and S. Dai, ACS Catal., 2015, 5(11), 6370-6385. https://doi.org/10.1021/acscatal.5b01667
  21. B. Sahoo and P. K. Panda, J. Adv. Ceram., 2013, 2, 26-30. https://doi.org/10.1007/s40145-013-0037-1
  22. Z. Zeng, Y. Liu, W. Zhang, H. Chevva, and J. Wei, J. Power Sources, 2017, 358, 22-28. https://doi.org/10.1016/j.jpowsour.2017.05.008
  23. Y. Zhao, J. Zhang, W. Wu, X. Guo, P. Xiong, H. Liu, and G. Wang, Nano Energy, 2018, 54, 129-137. https://doi.org/10.1016/j.nanoen.2018.10.008
  24. S. Cavaliere, M. Zaton, F. Farina, D. Jones, and J. Roziere, Electrospun materials for proton exchange membrane fuel cells and water electrolysis, Electrospinning: From Basic Research to Commercialization, 2018, 205-237.
  25. G. Elmaci, A. S. Erturk, M. Sevim, and O. Metin, Int. J. Hydrogen Energy, 2019, 44(33), 17995-18006. https://doi.org/10.1016/j.ijhydene.2019.05.089
  26. J. He, M. Wang, W. Wang, R. Miao, W. Zhong, S.-Y. Chen, S. Poges, T. Jafari, W. Song, J. Liu, and S. L. Suib, ACS Appl. Mater. Interfaces, 2017, 9(49), 42676-42687. https://doi.org/10.1021/acsami.7b07383
  27. M. Massaro, C. G. Colletti, G. Lazzara, S. Milioto, R. Noto, and S. Riela, J. Mater. Chem. A, 2017, 5, 13276-13293. https://doi.org/10.1039/C7TA02996A
  28. Y. Yang, Y. Chen, F. Leng, L. Huang, Z. Wang, and W. Tian, Appl. Sci., 2017, 7(12), 1215.
  29. A. Maleki, Z. Hajizadeh, and P. Salehi, Sci. Rep., 2019, 9, 5552.
  30. H. Peng, X. Liu, W. Tang, and R. Ma, Sci. Rep., 2017, 7, 2250.
  31. H. Lun, J. Ouyang, and H. Yang, RSC Adv., 2014, 4, 44197-44202. https://doi.org/10.1039/C4RA09006C
  32. T. Hayashi, N. Bonnet-Mercier, A. Yamaguchi, K. Suetsugu, and R. Nakamura, R. Soc. Open Sci., 2019, 6(5), 190122.
  33. P. R. Jadhav, M. P. Suryawanshi, D. S. Dalavi, D. S. Patil, E. A. Jo, S. S. Kolekar, A. A. Wali, M. M. Karanjkar, J.-H. Kim, and P. S. Patil, Electrochim. Acta, 2015, 176, 523-532. https://doi.org/10.1016/j.electacta.2015.07.002
  34. M. Muhler, J. Schutze, M. Wesemann, T. Rayment, A. Dent, R. Schlogl, and G. Ertl, J. Catal., 1990, 126(2), 339-360. https://doi.org/10.1016/0021-9517(90)90003-3
  35. L. Gui, Z. Huang, G. Li, Q. Wang, B. He, and L. Zhao, Electrochim. Acta, 2019, 293, 240-246. https://doi.org/10.1016/j.electacta.2018.10.033
  36. J. Yu, Y. Zhong, X. Wu, J. Sunarso, M. Ni, W. Zhou, and Z. Shao, Adv. Sci., 2018, 5(9), 1800514.
  37. S. Wang, A. Lu, and C.-J. Zhong, Nano Convergence, 2021, 8, 4.
  38. Z. Yan, H. Liu, Z. Hao, M. Yu, X. Chen, and J. Chen, Chem. Sci., 2020, 11,10614-10625. https://doi.org/10.1039/D0SC01532F
  39. S. Sun, Y. Sun, Y. Zhou, J. Shen, D. Mandler, R. Neumann, and Z. J. Xu, Chem. Mater., 2019, 31(19), 8106-8111. https://doi.org/10.1021/acs.chemmater.9b02737
  40. Y. Xu, J. Liu, J. Wang, G. Ma, J. Lin, Y. Yang, Y. Li, C. Zhang, and M. Ding, ACS Catal., 2019, 9(6), 5147-5156. https://doi.org/10.1021/acscatal.9b01045
  41. L. Zhang, Q. Fan, K. Li, S. Zhang and X. Ma, Sustainable Energy Fuels, 2020, 4, 5417-5432. https://doi.org/10.1039/D0SE01087A
  42. S. Liu and X. Qin, RSC Adv., 2015, 5, 15627-15633. https://doi.org/10.1039/C5RA00280J
  43. S. Hao, B. Zhang, J. Feng, Y. Liu, S. Ball, J. Pan, M. Srinivasan, and Y. Huang, J. Mater. Chem. A, 2017, 5, 8510-8518. https://doi.org/10.1039/C7TA00172J
  44. F. Nawaz, Y. Xie, J. Xiao, H. Cao, Y. Li, and D. Zhang, RSC Adv., 2016, 6, 29674-29684. https://doi.org/10.1039/C6RA03167F
  45. K. Mishra, T. N. Poudel, N. Basavegowda, and Y. R. Lee, J. Catal., 2016, 344, 273-285. https://doi.org/10.1016/j.jcat.2016.09.020
  46. M. Wang, K. Chen, J. Liu, Q. He, G. Li, and F. Li, Catalysts, 2018, 8(4), 138.
  47. J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-horn, Science, 2011, 334(6061), 1383-1385. https://doi.org/10.1126/science.1212858
  48. J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-Horn, Nature Chem., 2011, 3, 546-550. https://doi.org/10.1038/nchem.1069
  49. X. Zheng, L. Yu, B. Lan, G. Cheng, T. Lin, B. He, W. Ye, M. Sun, and F. Ye, J. Power Sources, 2017, 362, 332-341. https://doi.org/10.1016/j.jpowsour.2017.07.027
  50. G. W. Luther, Geomicrobiol. J., 2005, 22(3-4), 195-203. https://doi.org/10.1080/01490450590946022
  51. D. J. Davis, T. N. Lambert, J. A. Vigil, M. A. Rodriguez, M. T. Brumbach, E. N. Coker, and S. J. Limmer, J. Phys. Chem. C, 2014, 118(31), 17342-17350. https://doi.org/10.1021/jp5039865