DOI QR코드

DOI QR Code

Characterization of LaCoO3 Perovskite Catalyst for Oxygen Reduction Reaction in Zn-air Rechargeable Batteries

아연-공기전지용 페롭스카이트 산화물 촉매의 산소환원반응 특성

  • Sun, Ho-Jung (Department of Material Science & Engineering Kunsan National University) ;
  • Cho, Myung-Yeon (Department of Material Science & Engineering Kunsan National University) ;
  • An, Jung-Chul (Carbon Materials Research Group, Research Institute of Industrial Science & Technology) ;
  • Eom, Seungwook (Battery Research Center Korea Electrotechnology Research Institute) ;
  • Park, Gyungse (Department of Chemistry Kunsan National University) ;
  • Shim, Joongpyo (Department of Nano & Chemical Engineering, Kunsan National University)
  • 선호정 (군산대학교 신소재공학과) ;
  • 조명연 (군산대학교 신소재공학과) ;
  • 안정철 (포항산업과학연구원 탄소소재연구실) ;
  • 엄승욱 (한국전기연구원 전지연구센터) ;
  • 박경세 (군산대학교 화학과) ;
  • 심중표 (군산대학교 나노화학공학과)
  • Received : 2014.06.27
  • Accepted : 2014.08.31
  • Published : 2014.08.30

Abstract

$LaCoO_3$ powders synthesized by Pechini process were pulverized by planetary ball-milling to decrease particle size and characterized as a catalyst in alkaline solution for oxygen reduction and evolution reaction (ORR & OER). The changes of physical properties, such as particle size distribution, surface area and electric conductivity, were analyzed as a function of ball-milling time. Also, the variations of the crystal structure and surface morphology of ball-milled powders were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically catalytic activities of the intrinsic $LaCoO_3$ powders decreased with increasing ball-milling time, but their electrochemical performance as an electrode improved by the increase of the surface area of the powder.

Keywords

References

  1. G. Nagasubramanian, R. G. Jungst, D. H. Doughty, "Impedance, power, energy, and pulse performance characteristics of small commercial Li-ion cells", J. Power Sources, Vol. 83, No. 1-2, 1999, p. 193. https://doi.org/10.1016/S0378-7753(99)00296-7
  2. Q. Wu, W. Lu, J. Prakash, "Characterization of a commercial size cylindrical Li-ion cell with a reference electrode", J. Power Sources, Vol. 88, No.2, 2000, p. 237. https://doi.org/10.1016/S0378-7753(00)00372-4
  3. V. Neburchilov, H. Wang, J.J. Martin, W. Qu, "A review on air cathodes for zinc-air fuel cells", J. Power Sources, Vol. 195, No. 5, 2010, p. 1271. https://doi.org/10.1016/j.jpowsour.2009.08.100
  4. H. A.Gasteiger, S.S. Kocha, B.Sompalli, F. T. Wagner, "Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs", Appl. Catal., B, Vol. 56, No. 1-2, 2005, p. 9. https://doi.org/10.1016/j.apcatb.2004.06.021
  5. S. Trasatti, "Electrocatalysis in the anodic evolution of oxygen and chlorine", Electrochim. Acta, Vol. 29, No. 11, 1984, p. 1503. https://doi.org/10.1016/0013-4686(84)85004-5
  6. L. Q. Mao, D. Zhang, T. Sotomura, K. Nakatsu, N. Koshiba, T. Ohsaka, "Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts", Electrochim. Acta, Vol. 48, No. 8, 2003, p. 1015. https://doi.org/10.1016/S0013-4686(02)00815-0
  7. F. H. B. Lima, M. L. Calegaro, E. A. Ticianelli, "Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction", Electrochim. Acta, Vol. 52, No. 11, 2007, p. 3732. https://doi.org/10.1016/j.electacta.2006.10.047
  8. F. Y. Cheng, Y. Su, J. Liang, Z. L. Tao, J. Chen, "MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media", Chem. Mater., Vol. 22, No. 3, 2010, p. 898. https://doi.org/10.1021/cm901698s
  9. Y. Gorlin, T. F. Jaramillo, "A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation", J. Am. Chem. Soc., Vol. 132, No. 39, 2010, p. 13612. https://doi.org/10.1021/ja104587v
  10. W.J. King, A.C. Tseung, "The reduction of oxygen on nickel-cobalt oxides?I: The influence of composition and preparation method on the activity of nickel-cobalt oxides", Electrochim. Acta, Vol. 19, No. 8, 1974, p. 485. https://doi.org/10.1016/0013-4686(74)87029-5
  11. T. Kudo, H. Obayshi, M. Yoshide, "Rare Earth Cobaltites as Oxygen Electrode Materials for Alkaline Solution", J. Electrochem. Soc. Vol. 124, No. 3, 1977, p. 321. https://doi.org/10.1149/1.2133297
  12. T. Kudo, H. Obayshi, T. Gejo, "Electrochemical Behavior of the Perovskite-Type $Nd_{1-x}Sr_xCoO_3$ in an Aqueous Alkaline Solution", J. Electrochem. Soc. Vol. 122, No. 2, 1975, p. 159. https://doi.org/10.1149/1.2134173
  13. M.P. Pechini, "Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor", US Patent 3,330,697 (1967).
  14. J. Shim, Y.-S. Park, H.-K. Lee, S.-G. Park, J.-S. Lee, "Oxygen reduction reaction of $La_{1-x}Ca_xCoO_3$ of gas diffusion electrode in alkaline fuel cell", J. Kor. Ind. Eng. Chem., Vol. 7, No. 5, 1996, p. 992.
  15. S. Ahn, K. Kim, H. Kim, S. Nam, S. Eom, "Synthesis and electrochemical performance of $La_{0.7}Sr_{0.3}Co_{1.x}Fe_xO_3$ catalysts for zinc air secondary batteries", Phys. Scr., Vol. T139, 2010, p. 014014. https://doi.org/10.1088/0031-8949/2010/T139/014014
  16. D. Gao, J. Zhao, W. Zhou, R. Ran, Z. Shao, "Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of $Ba_{0.5}Sr_{0.5}Co_{0.5}Fe_{0.5}O_{3-{\delta}}$ membranes", J. Mem. Sci., Vol. 366, No. 1-2, 2011, 203. https://doi.org/10.1016/j.memsci.2010.10.001
  17. F. Franco, L.A. Perez-Maqueda, J.L. Perez-Rodriguez, "The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite", J. Colloid Interface Sci Vol. 274, No. 1, 2004, p. 107. https://doi.org/10.1016/j.jcis.2003.12.003
  18. S. Sompech, A. Srion, A. Nuntiya, "The Effect of Ultrasonic Treatment on the Particle Size and Specific Surface Area of $LaCoO_3$", Proc. Eng., Vol. 32, 2012, p. 1012. https://doi.org/10.1016/j.proeng.2012.02.047
  19. R. Robert, L. Bocher, M. Trottmann, A. Reller, A. Weidenkaff, "Synthesis and high-temperature thermoelectric properties of Ni and Ti substituted $LaCoO_3$", J. Solid State Chem., Vol. 179, No. 12, 2006, p. 3893. https://doi.org/10.1016/j.jssc.2006.08.022
  20. K. Iwasaki, T. Ito, T. Nagasaki, Y. Arita, M. Yoshino, T. Matsui, "Thermoelectric properties of polycrystalline $La_{1-x}Sr_xCoO_3$", J. Solid State Chem., Vol. 181, No. 11, 2008, p. 3145. https://doi.org/10.1016/j.jssc.2008.08.017
  21. S. Yamaguchi, Y. Okimoto, Y. Tokura, "Bandwidth dependence of insulator-metal transitions in perovskite cobalt oxides", Phys Rev B: Condens Matter, Vol. 54, No. 16, 1996, p. R11022 https://doi.org/10.1103/PhysRevB.54.R11022
  22. M.S Khalil, "Synthesis, X-ray, infrared spectra and electrical conductivity of La/Ba-$CoO_3$ systems", Mater. Sci. Eng. A, Vol. 352, No. 1-2, 2003, p. 64. https://doi.org/10.1016/S0921-5093(02)00557-9

Cited by

  1. Electrochemical Characterization of Electrospun LaCoO3 Perovskite Nanofibers Prepared at Different Temperature for Oxygen Reduction and Evolution in Alkaline Solution vol.26, pp.2, 2015, https://doi.org/10.7316/KHNES.2015.26.2.148
  2. Synthesis of highly porous LaCoO3 catalyst by Nanocasting and its performance for oxygen reduction and evolution reactions in alkaline solution pp.1573-8663, 2018, https://doi.org/10.1007/s10832-018-0165-7