• Title/Summary/Keyword: oxygen electrode

Search Result 582, Processing Time 0.029 seconds

A study on the characteristics of inner cell pressure for sealed type Ni-MH rechargeable battery using Zr-based hydrogen storage alloy as anode (Zr-based 수소저장합금을 음극으로 사용한 밀패형 Ni-MH 2차전지의 내압특성에 관한 연구)

  • Kim, Dong-Myung;Lee, Ho;Jang, Kuk-Jin;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.2
    • /
    • pp.79-90
    • /
    • 1997
  • Extensive work has been done on investigating the inner cell pressure characteristics of sealed type Ni-MH battery in which Zr-Ti-Mn-V-Ni alloy is used as anode. The inner cell pressure of this type Ni-MH battery much more increases with the charge/discharge cycling than that of the other type Ni-MH battery where commercialized $AB_5$ type alloy is used as anode. The increase of inner cell pressure in the sealed type Ni/MH battery using Zr-Ti-Mn-V-Ni alloy system is mainly due to the accumulation of oxygen gas during charge/discharge cycling. The accumulation of oxygen gas arises mainly due to the low rate of oxygen recombination on the MH electrode surface during charge/discharge cycling. The difference of oxygen recombination rate between $AB_5$ type electrode and Zr-Ti-Mn-V-Ni electrode is caused by the difference of electrode reaction surface area resulting from different particle size after their activation and the difference of surface catalytic activity for oxygen recombination reaction, respectively. After EIS analysis, it is identified that the surface catalytic activity affects much more dominantly on the oxygen recombination reaction than the reaction surface area does. In order to suppress the inner cell pressure of Ni-MH battery where Zr-Ti-Mn-V-Ni is used as anode, it is suggested that the surface catalytic activity for oxygen recombination should be improved.

  • PDF

The Electrocatalytic Reduction of Oxygen by Bis-Cobalt Phenylporphyrins in Various pH Solutions (여러 가지 pH 수용액에서 Bis-Cobalt Phenylporphyrin 유도체들에 의한 산소의 전극 촉매적 환원)

  • Yong-Kook Choi;Ki-Hyung Chjo;Jong-Ki Park
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.735-743
    • /
    • 1993
  • The electrocatalytic reduction of oxygen is investigated by cyclic voltammetry and chronoamperometry at glassy carbon electrode and carbon microelectrode coated with a variety of cobalt phenylprophyrins in various pH solutions. Oxygen reduction catalyzed by the monomeric porphyrin Co(Ⅱ)-TPP mainly occurs through the 2e$^-$ reduction pathway resulting in the formation of hydrogen peroxide whereas electrocatalytic process carried out 4e$^-$ reduction pathway of oxygen to H$_2$O at the electrodes coated with cofacial bis-cobalt phenylporphyrins in acidic solution. The electrocatalytic reduction of oxygen is irreversible and diffusion controlled. The reduction potentials of oxygen in various pH solutions have a straight line from pH 4 to pH 13, but level off in strong acidic solution. The reduction potentials of oxygen shift to positive potential more 400 mV at the electrode coated with monomer Co-TPP compound than bare glassy carbon electrode while 750 mV at the electrode coated with dimer Co-TPP compound.

  • PDF

Electrochemical Reduction of Oxygen at Co(II)-3,4-bis (salicylidene diimine)toluene Complex supported Glassy Carbon Electrode

  • 최용국;조기형;박경희
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 1995
  • Electrochemical reduction of oxygen has been carried out at glassy carbon electrode and carbon ultramicroelectrode, the surface of which is modified with a new Co(Ⅱ)-Schiff base complex, Co(Ⅱ)-3,4-bis(salicylidene diimine)toluene in 1 M KOH solution. The results obtained from cyclic voltammetric and chronoamperometric experiments are consistent with the formation of the reasonably stable superoxide ions as a primary electron transfer reaction product. The exchange rate constant obtained for oxygen reduction is about 0.02 cm/s.

Electrochemical stability of La0.6Sr0.4Co0.2Fe0.8O3-δ as a cathode for SOFC

  • Oh, Mi-Young;Jeong, Yong-Hoon;Oh, Se-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.498-506
    • /
    • 2016
  • Electrochemical measurement using a LSCF6428 electrode was performed to estimate the oxygen potential gradient in the electrode layer and a long time stability test was performed by applied potential to learn the overpotential effect on the LSCF6428 electrode. By fitting the observed impedance spectra, it was obtained that the amount of faradic current decreased with distance from cathode/electrolyte interface. Oxygen potential gradient was estimated to occur within 1 um region from the cathode/electrolyte interface at an oxygen partial pressure of 10-1 bar. The segregation of cation rich phases in the LSCF6428 electrode suggests that kinetic decomposition took place. However, impedance response after applying the potential showed no changes in the electrode compared with before applying potential. The obtained results suggest that segregation of a secondary phase in a LSCF6428 cathode is not related to performance degradation for solid oxide fuel cells (SOFCs).

Study on Oxygen Evolution Reaction of Ni-Zn-Fe Electrode for Alkaline Water Electrolysis (알칼라인 수전해용 Ni-Zn-Fe 전극의 산소 발생 반응 특성)

  • LEE, TAEKYUNG;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;KANG, KYOUNGSOO;KIM, YOUNGHO;JEONG, SEONGUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.549-558
    • /
    • 2018
  • The overall efficiency depend on the overpotential of the oxygen evolution reaction in alkaline water electrolysis. Therefore, it is necessary to research to reduce the oxygen evolution overpotential of electrodes. In this study, Ni-Zn-Fe electrodes were prepared by electroplating and the surface area was increased by Zn leaching process. Electroplating variables were studied to optimize the plating parameters(electroplating current density, pH value of electroplating solution, Ni/Fe content ratio). Ni-Zn-Fe electrode, which is electroplated in a modified Watts bath, showed 0.294 V of overpotential at $0.1A/cm^2$. That result is better than that of Ni and Ni-Zn plated electrodes. As the electroplating current density of the Ni-Zn-Fe electrode increased, the particle size tended to increase and the overpotential of oxygen evolution reaction decreased. As reducing pH of electroplating solution from 4 to 2, Fe content in electrode and activity of oxygen evolution reaction decreased.

A Study on the Microfabricated Clark-type Sensor for Measuring Dissolved Oxygen (용존 산소 측정용 초소형 Clark-type 센서에 대한 연구)

  • Park, Jung-Il;Chang, Jong-Hyeon;Choi, Myung-Ki;Lee, Dong-Young;Kim, Young-Mi;Pak, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1450-1454
    • /
    • 2007
  • This paper presents a microfabricated Clark-type sensor which exactly can measure dissolved oxygen in the cell containing solution. We designed, fabricated, and characterized a microfabircated Clark-type oxygen sensor for measuring dissolved oxygen. The microfabricated oxygen sensor consists of 3-electrodes on a glass substrate, a FEP (Fluorinated ethylene propylene) oxygen-permeable membrane, and PDMS (Polydimethylsiloxane) reservoir for storing sample solution. Thin-film Ag/AgCl was employed as a reference electrode and its durability was verified by obtaining a stable open circuit potential for 2 hours against a commercial Ag/AgCl electrode and a stable cyclic voltammetry curve. Selectivity, response time, and linearity of the fabricated oxygen sensor were also verified well by cyclic voltammetry and amperometry depending. The fabricated oxygen sensor showed a 90% response time of 40sec and an excellent linearity with a correlation coefficient of 0.994.

Activated Carbons as Electrode Materials in Electric Double-Layer Capacitors I. Electrochemical Properties of Activated Carbons in Relation to their Porous Structures and Surface Oxygen Functional Groups

  • Kim, Chang-Hee;Pyun, Su-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.819-826
    • /
    • 2003
  • This article is concerned with the overview of activated carbons as electrode materials in electric double-layer capacitors. Firstly, this article introduced various types of activated carbons with their precursors and manufacturing conditions which can be divided into two main steps of the carbonization and activation processes. Secondly, the present article gave the detailed discussion about the porous structures and examined previous works on the electrochemical behaviors of activated carbons in relation to their porous structures, along with our recent works. Finally, this article characterized the surface oxygen functional groups and presented their influence on the electrochemical properties of activated carbons by reviewing our recent results.

Poly(3,4-ethylenedioxythiophene) Electrodes Doped with Anionic Metalloporphyrins

  • 송의환;여인형;백운기
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1303-1308
    • /
    • 1999
  • Conducting poly(3,4-ethylenedioxythiophene) (PEDT) films with metalloporphyrins incorporated as the counter ions were prepared by electropolymerization of the monomer in the presence of metal-tetra(sulfonatophenyl) porphyrin anions. Cathodic reduction of oxygen on the resulting conducting polymer films was studied. The overpotential for O2 reduction on electrodes with cobalt-porphyrin complex was significantly smaller in acidic solutions than on gold. In basic solutions, the overpotential at low current densities was close to those on platinum and gold. Polymer electrode with Co-complex yielded higher limiting currents than with Fe-complex, although the Co-complex polymer electrode was a poorer electrocatalyst for O2 reduction in the activation range of potential than the Fe counterpart. From the rotating ring-disk electrode experiments, oxygen reduction was shown to proceed through either a 4-electron pathway or a 2-electron pathway. In contrast to the polypyr-role-based electrodes, the PEDT-based metalloporphyrin electrodes were stable with wider potential windows, including the oxygen reduction potential. Their electrocatalytic properties were maintained at temperatures up to 80℃ in KOH solutions.

Electrical properties of thick film dissolved oxygen sensors (후막형 용존 산소 센서의 전기적 특성)

  • Lee, Kyung-Jun;Jung, Kyung-Jin;Lee, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.92-95
    • /
    • 2003
  • The dissolved oxygen sensors with thick film type were fabricated for low cost products and the electrical properties were investigated in the different operating temperatures. Pt paste was used for working electrode and Ag/AgCl paste for reference electrode. The fabricated devices have fast response of current changes according to dissolved oxygen concentrations in the applied voltage of $0.6{\sim}0.8V$. This is expected to apply a chip and/or disposal dissolved oxygen sensors.

  • PDF

Effect of Electroplating Parameters on Oxygen Evolution Reaction Characteristics of Raney Ni-Zn-Fe Electrode (Raney Ni-Zn-Fe 전극의 산소발생 반응 특성에 미치는 도금변수의 영향)

  • CHAE, JAEBYEONG;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;JEONG, SEONGUK;JUNG, KWANGJIN;KIM, YOUNGHO;KANG, KYOUNGSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • The intermittent characteristics of renewable energy complicates the process of balancing supply with demand. Electrolysis technology can provide flexibility to grid management by converting electricity to hydrogen. Alkaline electrolysis has been recognized as established technology and utilized in industry for over 100 years. However, high overpotential of oxygen evolution reaction in alkaline water electrolysis reduces the overall efficiency and therefore requires the development of anode catalyst. In this study, Raney Ni-Zn-Fe electrode was prepared by electroplating and the electrode characteristics was studied by varying electroplating parameters like electrodeposition time, current density and substrate. The prepared Raney Ni-Zn-Fe electrode was electrochemically evaluated using linear sweep voltammetry. Physical and chemical analysis were conducted by scanning electron microscope, energy dispersive spectrometer, and X-ray diffraction. The plating time did not changed the morphology and composition of the electrode surface and showed a little effect on overpotential reduction. As the plating current density increased, Fe content on the surface increased and cauliflower-like structure appeared on the electrode surface. In particular, the overpotential of the electrode, which was prepared at the plating current density of 320 mA/㎠, has showed the lowest value of 268 mV at 50 mA/㎠. There was no distinguishable overpotential difference between the type of substrate for the electrodes prepared at 80 mA/㎠.