• Title/Summary/Keyword: oxygen depletion

Search Result 156, Processing Time 0.022 seconds

How are the Spatio-Temporal Distribution Patterns of Benthic Macrofaunal Communities Affected by the Construction of Shihwa Dike in the West Coast of Korea? (시화방조제의 건설은 저서동물군집의 시${\cdot}$공간 분포에 어떠한 영향을 미쳤는가?)

  • HONG Jae-Sang;JUNG Rae-Hong;SEO In-Soo;YOON Kon-Tak;CHOI Byong-Mee;YOO Jae-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.882-895
    • /
    • 1997
  • Changes in the benthic communities have been studied to investigate the environmental effects before and after the construction of Shihwa Dike in the West coast of Korea. It is suggested that sequential changes in macrofaunal assemblages progressed in two sucressional directions. In the Shihwa lake under the influence of organic enrichment. First, the appearance of 'azoic tone' or 'grossly polluted zone' developed in the area of less than 6 m in depth resulted from the severe dissolved oxygen depletion due to the eutrophication from the increased organic loading. Second, the 'polluted zone' characterized by the proliferation of the opportunistic species in organically enriched area, was found in the vicinity of the industrial discharges and nearby fluvial inputs. This benthic community succession in the Shihwa lake seemed to be caused by the various ecological events such as an eutrophication in this organically enriched environment after construction of the dike and other physico-chemical parameters like salinity and dissolved oxygen in the bottom water, which may be influenced by the irregular surface water discharge and dilution by outer seawater inflow through the water gate of the dike. On the other hand, the benthic communities in the outside of the dike showed that the species richness was more than doubled and the abundance increased almost seven times more than that before the dike construction. This may be a typical characteristics of the initial phase in benthic eutrophication, suggesting that an increased organic input area may have been reponsible for this faunal change in the study area.

  • PDF

Angiotensin II-Induced Generation of Reactive Oxygen Species Is Regulated by a Phosphatidylinositol 3-Kinase/L-Type Calcium Channel Signaling Pathway (Angiotensin II에 의해 유도되는 활성산소발생 기전에 대한 연구)

  • Jin, Seo Yeon;Ha, Jung Min;Kim, Young Whan;Lee, Hye Sun;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.231-236
    • /
    • 2015
  • Angiotensin II (AngII) is an essential hormone that affects vascular physiology. For example, stimulation of vascular smooth muscle cells (VSMCs) rapidly induces vasoconstriction and results in the up-regulation of blood pressure. Chronic stimulation of VSMCs with AngII also results in hypertrophy. In this study, we confirmed an involvement of phosphatidylinositol 3-kinase (PI3K)-dependent calcium mobilization in AngII-induced generation of reactive oxygen species (ROS). Stimulation of rat aortic smooth muscle cells (RASMCs) with AngII significantly induced the generation of ROS in a dose- and time-dependent manner. AngII-induced generation of ROS was completely abolished by pharmacological inhibition of PI3K (with LY294002), but inhibition of the ERK signaling pathway had no effect. AngII-induced calcium mobilization was completely blocked by inhibition of PI3K, whereas inhibition of the ERK signaling pathway by PD98059 was ineffective. Depletion of extracellular calcium or inhibition of the L-type calcium channel by nifedipine completely blocked AngII-induced calcium mobilization. Depletion of extracellular calcium by EGTA and incubation of RASMCs with calcium-free medium both significantly blocked AngII-induced ROS generation. Inhibition of the L-type calcium channel also significantly blocked AngII-induced ROS generation. These results suggest that AngII-induced ROS generation is regulated by calcium mobilization, which, in turn, is modulated by a PI3K/L-type calcium channel signaling pathway.

Effects of NaOCl on the Intracellular Calcium Concentration in Rat Dorsal Root Ganglion Neurons

  • Lee, Hae-In;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.35 no.3
    • /
    • pp.129-135
    • /
    • 2010
  • Recent studies have implicated reactive oxygen species (ROS) as determinants of the pathological pain caused by the activation of peripheral neurons. It has not been elucidated, however, how ROS activate the primary sensory neurons in the pain pathway. In this study, calcium imaging was performed to investigate the effects of NaOCl, a ROS donor, on the intracellular calcium concentration ($[Ca^{2+}]i$) in acutely dissociated dorsal root ganglion (DRG) neurons. DRG was sequentially treated with 0.2 mg/ml of both protease and thermolysin, and single neurons were then obtained by mechanical dissociation. The administration of NaOCl then caused a reversible increase in the $[Ca^{2+}]i$, which was inhibited by pretreatment with phenyl-N-tertbuthylnitrone (PBN) and isoascorbate, both ROS scavengers. The NaOCl-induced $[Ca^{2+}]i$ increase was suppressed both in a calcium free solution and after depletion of the intracellular $Ca^{2+}$ pool by thapsigargin. Additionally, this increase was predominantly blocked by pretreatment with the transient receptor potential (TRP) antagonists, ruthenium red ($50\;{\mu}M$) and capsazepine ($10\;{\mu}M$). Collectively, these results suggest that an increase in the intracellular calcium concentration is produced from both extracellular fluid and the intracellular calcium store, and that TRP might be involved in the sensation of pain induced by ROS.

Effects of Sunghyangchungisan(SHCS) on Oxidant-induced Cell Death in Human Neuroglioma Cells

  • Kim Na-Ri;Kwon Jung-Nam;Kim Young-Kyun
    • The Journal of Korean Medicine
    • /
    • v.26 no.2 s.62
    • /
    • pp.63-76
    • /
    • 2005
  • Objectives: Reactive oxygen species (ROS) have been implicated in the pathogenesis of a wide range of acute and longterm neurodegenerative diseases. This study was undertaken to examine whether Sunghyangchungisan(SHCS), a well-known prescription in Korean traditional medicine, might have beneficial effects on ROS-induced brain cell injury. Methods: Human neuroglioma cell line A172 and H2O2 were employed as an experimental model cell and oxidant. Results: SHCS effectively protected the cells against both the necrotic and apoptotic cell death induced by H2O2. The effect of SHCS was dose-dependent at concentrations ranging from 0.2 to 5mg/ml. SHCS significantly prevented depletion of cellular ATP and activation of poly (ADP-ribose) polymerase induced by H2O2. It also helped mitochondria to preserve its functional integrity estimated by MTT reduction ability. Furthermore, SHCS significantly prevented H202-induced release of cytochrome c into cytosol. Determination of intracellular ROS showed that SHCS might exert its role as a powerful scavenger of intracellular ROS. Conclusions: The present study provides clear evidence for the beneficial effect of SHCS on ROS-induced neuroglial cell injury. The action of SHCS as an ROS-scavenger might underlie the mechanism.

  • PDF

Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

  • Kim, Jae Ho;Jenrow, Kenneth A.;Brown, Stephen L.
    • Radiation Oncology Journal
    • /
    • v.32 no.3
    • /
    • pp.103-115
    • /
    • 2014
  • To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

Differential Effect of Harmalol and Deprenyl on Dopamine-Induced Mitochondrial Membrane Permeability Change in PC12 Cells

  • Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 2004
  • Opening of the mitochondrial permeability transition pore has been recognized to be involved in cell death. The present study investigated the effect of ${\beta}$-carbolines (harmaline and harmalol) and deprenyl on the dopamine-induced change in the mitochondrial membrane permeability and cell death in differentiated PC12 cells. Cell death due to 250 4{\mu}$M dopamine was inhibited by caspase inhibitors (z-IETD.fmk, z-LEHD.fmk and z-DQMD.fmk) and antioxidants (N-acetylcysteine, ascorbate, superoxide dismutase, catalase and carboxy-PTIO). ${\beta}$-Carbolines prevented the dopamine-induced cell death in PCl2 cells, while deprenyl did not inhibit cell death. ${\beta}$-Carbolines decreased the condensation and fragmentation of nuclei caused by dopamine in PC12 cells. ${\beta}$-Carbolines inhibited the decrease in mitochondrial transmembrane potential, cytochrome c release, formation of reactive oxygen species and depletion of GSH caused by dopamine in PC12 cells, whereas deprenyl did not decrease dopamine-induced mitochondrial damage. ${\beta}$-Carbolines, deprenyl and antioxidants depressed the formation of nitric oxide and melanin in dopamine-treated PC12 cells. The results suggest that cell death due to dopamine PC12 cells is mediated by caspase-8, -9 and -3. Unlike deprenyl, ${\beta}$-carbolines may attenuate the dopamineinduced cell death in PC12 cells by suppressing change in the mitochondrial membrane permeability through inhibition of the toxic action of reactive oxygen and nitrogen species.

Effect of Nitrogen Treatment on the Structure and Magnetic Properties of $RuSr_2(EuCe)Cu_2O_z$ Compound (질소 열처리에 따른 $RuSr_2(EuCe)Cu_2O_z$ 계의 구조 및 자기적 특성)

  • Lee, H.K.;Kim, Y.I.;Kim, Y.C.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.178-183
    • /
    • 2012
  • Two $RuSr_2(EuCe)Cu_2O_z$ samples (as prepared and after $N_2$ treatment) have been investigated by thermogravimetric (TC) analysis, high-resolution x-ray powder diffraction and magnetization measurements. TG measurements which were carried out in $H_2/Ar$ atmosphere showed that the $N_2$ treatment of the as-prepared sample at $650^{\circ}C$ for 2h leads to a decrease in the oxygen content z by about 0.25. This oxygen depletion was accompanied by an increase in the magnetic transition temperature from 54.0 K to 114.9 K. This magnetic behavior is discussed in connection with the results of Rietveld analysis of the x-ray diffraction data which showed that the $N_2$ treatment resulted in both a significant increase in the rotation angle of the $RuO_6$ octahedra and a decrease in c-lattice parameter of the sample.

Fraction and Mobility of Heavy Metals in the abandoned closed mine near Okdong stream sediments

  • Kim, Hee-Joung;Yang, Jae;Lee, Jai-Young;Jun, Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.56-63
    • /
    • 2003
  • Fractional composition and mobility of sediments some heavy metals in Okdong stream are investigated. The fractional scheme for sediment heavy metal was made for five chemically defined heavy metal forms as adsorbed fraction, carbonate fraction, reducible fraction, organic fraction, and residual fraction (Tessier et at., 1979). The most abundant fraction of the sediment heavy metal is reducible and secondly abundant organic fraction. Adsorbed fraction is minor part of the total heavy metals. Mobilization of sediment heavy metals in stream Okdong is occur 19.8∼56.7% of total cadmium concentrate. The most abundant fraction of the sediment metal is organic fraction in Cu, Pb metals investigated. Labile fraction of sediment metals are 0.5%∼48.5% of total Zn, 2.6%∼48.1% of total Pb, 0.2∼36.9% of total Cu respectively, Most of labile fraction consists of reducible fraction for Cd, Zn, adsorbed fraction for Pb, reducible fraction for Cu, adsorbed fraction for Ni. The Mobilization of Zn and Cu is most likely to occur when oxygen depletes and that of Pb and Ni occurs when physical impact, oxygen depletion and pH reduction.

  • PDF

Scale-up of Flat Panel Photobioreactor considering Hydrodynamics (수력학을 고려한 평판형 광생물 반응기의 스케일업에 관한 연구)

  • Kim, Gwang-Ho;Lee, Dong-Woon;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.48-56
    • /
    • 2018
  • Due to the growing concerns of energy resource depletion and environmental destruction, the mass production of microalgae has been studied. The scale-up of a photobioreactor (PBR) is required for the mass production of biomass. In this paper, the geometric parameters and oxygen transfer rate (OTR) are considered, to scale up a flat panel photobioreactor (FP PBR). The PBR is designed using the goal-driven optimization (GDO) method to accomplish the scale-up. The local sensitivity of each output parameter with respect to the input parameter is analyzed through the design of experiment (DOE), and the design candidates are evaluated with the screening sampling method. The volumetric mass transfer coefficient is measured by the dynamic method.

Generation of Free Radicals by Interaction of Iron with Thiols in Human Plasma.

  • Lee, S. J.;K. Y. Chung;J. H. Chung.
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2002.05a
    • /
    • pp.138-138
    • /
    • 2002
  • Oxidative stress has been associated with a number of diseases in human. Among the sources that can generate oxidative stress, it has been reported that iron can generate reactive oxygen species (ROS)with thiol. In iron overload state, increased thiol levels in plasma appeared to be associated with human mortality. In this study we examined whether iron could interact with thiols in plasma, generating ROS. In human plasma, unlike with Fe(III), Fe(II) increased lucigenin-enhanced chemiluminescence in concentration-dependent manner, and this was inhibited by SOD. Boiling of plasma did not affect chemiluminescence induced by Fe(II). Hovever, thiol depletion in plasma by pretreatment with N-ethylmaleimide (NEM)decreased Fe(II)-induced chemiluminescence significantly, suggesting that Fe(II) generated superoxide anion by the nonenzymatic reaction with plasma thiol. Consistent with this findings, albumin, the major thiol contributor in plasma, also generated ROS with Fe(II) and this generation was inhibited by pretreatment with NEM. Treatment with Fe(II) to plasma resulted un significant reduction of oxygen radical absorbance capacity (ORAC) value, suggest that total antioxidant capacity could diminished in iron overload state. In conclusion, In iron overload state, plasma may be affected by oxidative stress mediated by nonenzymatic reaction of Fe (II)with plasma thiol.

  • PDF