• Title/Summary/Keyword: oxygen consumption

Search Result 740, Processing Time 0.031 seconds

Toxicity of Copper, Cadmium and Chromium on Survival, Growth and Oxygen Consumption of the Mysid, Neomysis awatschensis (곤쟁이 Neomysis awatschensis와 생존, 성장 및 산소소비에 미치는 구리, 카드뮴, 크롬의 독성)

  • KANG Ju-Chan;KIM Heung-Yun;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.874-881
    • /
    • 1997
  • In order to estimate toxicity of copper, radmium and chromium on survival, growth and oxygen consumption of the estuarine mysid, Neomysis awatschensis, adult and juvenile, the experiments were conducted by renewal bioassay method at $20{\pm}1^{\circ}C\;and\;20{\pm}1\%_{\circ}$ salinity. The $96hr-LC_{50}$ of the mysid exposed to cadmium, copper and chromium was 20.2, 11.3 and $670.4\;{\mu}g/\ell$ in adut and 3.4, 1.9 and $49.4\;{\mu}g/\ell$ in juvenile, respectively, and were ranked in order of toxicity : copper >cadmium >chromium. Survival rates of the mysid exposed to the sublethal concentrations of heavy metals for 40 days were significantly affected by cadmium $\geq1.0\;{\mu}g/\ell$ and copper $\geq0.6\;{\mu}g/\ell$ concentrations. The growth rate of the mysid exposed to $cadmium\geq2.0\;{\mu}g\ell$ and copper $\geq1.2\;{\mu}g/\ell$ concentrations were significantly reduced than that exposed to normal condition, but there was no affect on intermoult period. Oxygen consumption rate of the mysid exposed to heavy metals was significantly reduced with increasing heavy metals concentrations. The results of the present study led us to conclude that concentrations levels cadmium$\geq1.0\;{\mu}g\ell$ and copper $\geq0.6\;{\mu}g\ell$ of the estuarine could markedly affect the distribution and population of the mysid by reduced survival, growth and oxygen consumption rate.

  • PDF

Effects of Salinity on Survival, Growth and Oxygen Consumption rates of the Juvenile gobiid, Favonigobius gymnauchen (날개망둑 치어의 생존, 성장 및 산소소비율에 미치는 염분의 영향)

  • KANG Ju-Chan;CHIN Pyung;LEE Jung-Sick;SHIN Yun-Kyung;CHO Kyu-Seok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.408-412
    • /
    • 2000
  • The juvenile Bobiids, Faronirobius gymnauchen, were reared for 40 days under $0{\~}33.6{\%_{\circ}}$ salinity conditions to examine the effects of various salinity on its survival, growth and oxygen consumption rates, Survival rate was significantly declined below $6.7{\%_{\circ}}$ salinity, and daily growth rate was also reduced below $10.1{\%{\circ}}$. Body length and weight of gobiids reared below $10.1{\%_{\circ}}$ were smaller than those of gobiids reared above $20.2{\%_{\circ}}$. Oxygen consumption rate in the salinity conditions ${\leq}13.4{\%_{\circ}}$ was significantly reduced with decreasing salinity than that in natural seawater ($33.6{\%_{\circ}}$), This study revealed that low salinity reduced survival, growth and oxygen consumption rates of the juvenile gobiids suggesting potential influence on the natural mortality of F gymnauchen in the coastal areas.

  • PDF

Sediment Oxygen Consumption Rate and Hydrogen Sulfide Release by Dissolved Oxygen Depletion in Hypoxic Area of the Gamak Bay, Korea (가막만 빈산소 해역의 퇴적물 산소소모율과 용존산소 고갈에 의한 황화수소 용출)

  • Lee, Taehee
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.293-302
    • /
    • 2015
  • This study investigated sediment oxygen consumption rates and geochemical characteristics of sediment in hypoxic area of the Gamak Bay based on the chamber experiments and geochemical analyses. The organic carbon contents of surface sediment in the Gamak Bay showed that the inner bay area has higher organic carbon content than those of the outer bay. They toward the outer bay, contents dropped off. The vertical profiles of calcium carbonate ($CaCO_3$) content at piston core sediment assumed that the hypoxia have been frequently occurred during past century in the northern inner bay. The benthic chamber experiments were conducted in February, May, August and November 2010, 2011 in the hypoxic area of the Gamak Bay. In the sediment incubation experiment with chamber at site C3 in the northern inner bay and site C17 in the southern outer bay, the sediment oxygen consumption rate ranged from $3.98mmol\;m^{-2}d^{-1}$ to $12.43mmol\;m^{-2}d^{-1}$ and $3.28mmol\;m^{-2}d^{-1}$ to $8.18mmol\;m^{-2}d^{-1}$, respectively. When the oxygen was completely depleted, the toxic hydrogen sulfide was released with $1.38mmol\;m^{-2}d^{-1}$ and $1.3mmol\;m^{-2}d^{-1}$, respectively.

Effects of Ti Thickness on Ti Reactions in Cu/Ti/SiO2/Si System upon Annealing (Cu/Ti/SiO2/Si 구조에서 Ti 층 두께가 Ti 반응에 미치는 효과)

  • Hong, Sung-Jin;Lee, Jae-Gab
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.889-893
    • /
    • 2002
  • The reactions of $Cu/Ti/SiO_2$ structures at temperatures ranging from 200 to $700^{\circ}C$ have been studied for various Ti thicknesses. The reaction products initially formed, at around $300^{\circ}C$, were a series of Cu-Ti intermetallics ($Cu_3$Ti/CuTi) with the oxygen dissolved in the Ti moving from the compounds into the remaining unreacted Ti. At $500^{\circ}C$, the $Cu_3$Ti was converted into Cu-rich intermetallics, $Cu_4$Ti, which grew at the expense of the CuTi due to the increased oxygen content in the Ti. In addition, the outdiffusion of Ti, to the Cu surface, and the $Ti-SiO_2$ reactions, caused an abrupt increase in the oxygen content in the Ti layer, which placed thermodynamic restraints on further Ti reactions. Furthermore, thinner Ti layers showed a higher increasing rate of oxygen accumulation for the same consumption of Ti, which led to significantly reduced Ti consumption. The $SiO_2$ film under the Ti diffusion barrier was more easily destroyed with increasing Ti thickness.

Molecular Links between Alcohol and Tobacco Induced DNA Damage, Gene Polymorphisms and Patho-physiological Consequences: A Systematic Review of Hepatic Carcinogenesis

  • Mansoori, Abdul Anvesh;Jain, Subodh Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4803-4812
    • /
    • 2015
  • Chronic alcohol and tobacco abuse plays a crucial role in the development of different liver associated disorders. Intake promotes the generation of reactive oxygen species within hepatic cells exposing their DNA to continuous oxidative stress which finally leads to DNA damage. However in response to such damage an entangled protective repair machinery comprising different repair proteins like ATM, ATR, H2AX, MRN complex becomes activated. Under abnormal conditions the excessive reactive oxygen species generation results in genetic predisposition of various genes (as ADH, ALDH, CYP2E1, GSTT1, GSTP1 and GSTM1) involved in xenobiotic metabolic pathways, associated with susceptibility to different liver related diseases such as fibrosis, cirrhosis and hepatocellular carcinoma. There is increasing evidence that the inflammatory process is inherently associated with many different cancer types, including hepatocellular carcinomas. The generated reactive oxygen species can also activate or repress epigenetic elements such as chromatin remodeling, non-coding RNAs (micro-RNAs), DNA (de) methylation and histone modification that affect gene expression, hence leading to various disorders. The present review provides comprehensive knowledge of different molecular mechanisms involved in gene polymorphism and their possible association with alcohol and tobacco consumption. The article also showcases the necessity of identifying novel diagnostic biomarkers for early cancer risk assessment among alcohol and tobacco users.

Effects of Oxygen Supply and Mixed Sugar Concentration on ${\small{D}}$-Ribose Production by a Transketolase-Deficient Bacillus subtilis SPK1

  • Park, Yong-Cheol;Lee, Hae-Jin;Kim, Chang Sup;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.560-564
    • /
    • 2013
  • ${\small{D}}$-Ribose is a value-added five-carbon sugar used for riboflavin production. To investigate the effects of oxygen supply and mixed sugar concentration on microbial production of ${\small{D}}$-ribose, a transketolase-deficient Bacillus subtilis SPK1 was cultured batch-wise using xylose and glucose. A change of agitation speed from 300 rpm to 600 rpm at 1 vvm of air supply increased both the xylose consumption rate and ${\small{D}}$-ribose production rate. Because the sum of the specific consumption rates for xylose and glucose was similar at all agitation speeds, metabolic preferences between xylose and glucose might depend on oxygen supply. Although B. subtilis SPK1 can take up xylose and glucose by the active transport mechanism, a high initial concentration of xylose and glucose was not beneficial for high ${\small{D}}$-ribose production.

Correlation between Characteristics of SOD in Coastal Sewage and Predictive Factor (연안 저질 SOD의 특성과 유발 영향인자에 대한 상관관계)

  • Kim, Beom-Geun;Khirul, Md Akhte;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.596-604
    • /
    • 2019
  • This study conducted a sediment culture experiment to investigate the effects of sediment oxygen demand (SOD) and environmental factors on sediment and water quality. We installed a leaching tank in the laboratory, cultured it for 20 days, and analyzed the relationship between P and Fe in the sediment. As a result, the dissolved oxygen of the water layer decreased with time, while the oxidation-reduction potential of the sediment progressed in the negative direction to form an anaerobic reducing environment. The SOD was measured to be 0.05 mg/g at the initial stage of cultivation and increased to 0.09 mg/g on the 20th day, indicating the tendency of increasing consumption of oxygen by the sediment. The change is likely to have caused by oxygen consumption from biological-SOD, which is the decomposition of organic matter accumulated on the sediment surface due to the increase of chl-a, and chemical-SOD consumed when the metal-reducing product produced by the reduction reaction is reoxidized. The correlation between SOD and causality for sediment-extracted sediments was positive for Ex-P and Org-P and negative for Fe-P. The analysis of the microbial community in the sediment on the 20th day showed that anaerobic iron-reducing bacteria (FeRB) were the dominant species. Therefore, when the phosphate bonded to the iron oxide is separated by the reduction reaction, the phosphate is eluted into the water to increase the primary productivity. The reduced substance is reoxidized and contributes to the oxygen consumption of the sediment. The results of this study would be useful as the reference information to improve oxygen resin.

Effects of Protein Kinase C Modulation on Hepatic Hemodynamics and Glucoregulation

  • Lee, Joong-Woo;Kong, In-Deok;Park, Kyu-Sang;Chung, Hae-Sook;Filkins, James P.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.571-578
    • /
    • 1999
  • This study evaluated the effects of PKC activation using phorbol 12-myristate 13-acetate (PMA) and PKC inhibition using the isoquinoline sulfomide derivative H-7 on hemodynamics and glucoregulation in the isolated perfused rat liver. Livers were isolated from fed male Holtzman rats and perfused with Krebs Ringer bicarbonate solution under a constant flow of 50 ml/min at $35^{\circ}C.$ Portal vein pressure, glucose and lactate concentrations in the medium and oxygen consumption rates were continuously monitored by a Grass polygraph, YSI glucose and lactate monitors, and a YSI oxygen monitor, respectively. PMA at concentration of 2 to 200 nM increased the portal vein pressure, glucose and lactate production, but decreased oxygen consumption rate in a dose-dependent fashion. H-7 $(200\;{\mu}M)$ attenuated PMA (50 nM)-induced vasoconstriction $(15.1{\pm}1.36\;vs\;10.56{\pm}1.17\;mmHg),$ glucose production rate $(91.3{\pm}6.15\;vs\;71.8{\pm}2.50\;{\mu}moles/g/hr),$ lactate production rate $(72.4{\pm}6.82\;vs\;53.6{\pm}4.82\;{\mu}moles/g/hr)$ and oxygen consumption rate $(33.7{\pm}1.41\;vs\;27.9{\pm}1.75\;{\mu}l/g/min).$ The effects of PMA were blocked either by addition of verapamil $(9\;{\mu}M)$ or perfusion with $Ca^{2+}-free$ KRB. These results suggest that the hemodynamic and glucoregulatory changes in the perfused rat liver are mediated by protein kinase C activation and require $Ca^{2+}$ influx from the extracellular fluid.

  • PDF

Change on Stress Responses and Oxygen Consumption of Olive Flounder, Paralichthys olivaceus at Different Water Temperature (수온별 넙치(Paralichthys olivaceus)의 스트레스 반응 및 산소소비 변화)

  • Park, Hyung-Jun;Kim, Sung-Yeon;Yang, Sung-Jin;Min, Byung-Hwa
    • Journal of Marine Life Science
    • /
    • v.2 no.1
    • /
    • pp.12-19
    • /
    • 2017
  • This study investigated physiological and hematological changes, expression of stress protein Hsp70 mRNA and oxygen consumption in olive flounder (Paralichthys olivaceus) after exposing the fish at different temperature conditions (9, 12, 15, 18 and 21℃) for 24 and 48 hours. Hematological parameters including hematocrit (Ht) and hemoglobin (Hb), cortisol and glucose, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), NH3, osmolality and total protein (TP) mostly exhibited significant changes at 9 and 12℃. The expression of Hsp70 mRNA was also higher at 9 and 12℃ than at other temperatures. The measured oxygen consumptions were also lower at 9 and 12℃ than at 21℃. It is expected that the study results could be utilized as baseline data to control water temperature during long-distance transportation, e.g. for exporting olive flounder juveniles to overseas.

Estimation of Oxygen Consumption Rate and Organic Carbon Oxidation Rate at the Sediment/Water Interface of Coastal Sediments in the South Sea of Korea using an Oxygen Microsensor (산소 미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소 산화율 추정)

  • Lee, Jae-Seon;Kim, Kee-Hyun;Yu, Jun;Jung, Rae-Hong;Ko, Tae-Seung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.392-400
    • /
    • 2003
  • We used an oxygen microelectrode to measure the vertical profiles of oxygen concentration in sediments located near point sources of organic matter. The measurements were carried out between 13th and 17th May, 2003, in semi-closed bay and coastal sediments in the central part of the South Sea. The measured oxygen penetration depths were extremely shallow and ranged from 1.30 to 3.80 mm. This suggested that the oxidation and reduction reactions in the early diagenesis should be studied at the mm depth scale. In order to estimate the oxygen consumption rate, we applied the one-dimension diffusion-reaction model to vertical profiles of oxygen near the sediment/water interface. Oxygen consumption rates were estimated to be between 10.8 and 27.6 mmol O$_2$ m$\^$-2/ day$\^$-1/(average: 19.1 mmol O$_2$ m$\^$-2/ day$\^$-1/). These rates showed a positive correlation with the organic carbon of the sediments. The corresponding benthic organic carbon oxidation rates calculated using an modified Redfield ratio (170/110) at the sediment/water interface were in the range of 89.5-228.1 mg C m$\^$-2/ day$\^$-1/(average: 158.0 mg C m$\^$-2/ day$\^$-1/). We suggest that these results are maximum values at the presents situation in the bay because the sampling sites were located near point sources of organic materials. This study will need to be carried out at many coastal sites and throughout the seasons to allow an understanding of the mechanisms of eutrophication e.g. the spatial distribution of oxygen consumption within the oxic zone and hypoxic conditions in the coastal sea.