Browse > Article
http://dx.doi.org/10.4014/jmb.1212.12021

Effects of Oxygen Supply and Mixed Sugar Concentration on ${\small{D}}$-Ribose Production by a Transketolase-Deficient Bacillus subtilis SPK1  

Park, Yong-Cheol (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University)
Lee, Hae-Jin (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University)
Kim, Chang Sup (Department of Chemical and Biological Engineering, Hanbat National University)
Seo, Jin-Ho (Department of Agricultural Biotechnology, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.4, 2013 , pp. 560-564 More about this Journal
Abstract
${\small{D}}$-Ribose is a value-added five-carbon sugar used for riboflavin production. To investigate the effects of oxygen supply and mixed sugar concentration on microbial production of ${\small{D}}$-ribose, a transketolase-deficient Bacillus subtilis SPK1 was cultured batch-wise using xylose and glucose. A change of agitation speed from 300 rpm to 600 rpm at 1 vvm of air supply increased both the xylose consumption rate and ${\small{D}}$-ribose production rate. Because the sum of the specific consumption rates for xylose and glucose was similar at all agitation speeds, metabolic preferences between xylose and glucose might depend on oxygen supply. Although B. subtilis SPK1 can take up xylose and glucose by the active transport mechanism, a high initial concentration of xylose and glucose was not beneficial for high ${\small{D}}$-ribose production.
Keywords
${\small{D}}$-Ribose; xylose; Bacillus subtilis; oxygen supply; mixed sugar;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Park, Y. C. and J. H. Seo. 2004. Optimization of culture conditions for D-ribose production by transketolase-deficient Bacillus subtilis JY1. J. Microbiol. Biotechnol. 14: 665-672.
2 De Wulf, P., W. Soetaert, D. Schwengers, and E. J. Vandamme. 1996. D-Glucose does not catabolite repress a transketolasedeficient D-ribose-producing Bacillus subtilis mutant strain. J. Ind. Microbiol. Biotechnol. 17: 104-109.
3 Kim, B., S. Lee, J. Park, M. Lu, M. Oh, Y. Kim, and J. Lee. 2012. Enhanced 2,3-butanediol production in recombinant Klebsiella pneumoniae via overexpression of synthesis-related genes. J. Microbiol. Biotechnol. 22: 1258-1263.   DOI   ScienceOn
4 Li, Y. L., J. H. Hugenholtz, J. C. Chen, and S. Y. L. Lun. 2002. Enhancement of pyruvate production by Torulopsis glabrata using a two-stage oxygen supply control strategy. Appl. Microbiol. Biotechnol. 60: 101-106.   DOI   ScienceOn
5 Park, Y. C., J. H. Choi, G. N. Bennett, and J. H. Seo. 2006. Characterization of D-ribose biosynthesis in Bacillus subtilis JY200 deficient in transketolase gene. J. Biotechnol. 121: 508-516.   DOI   ScienceOn
6 Park, Y. C., S. G. Kim, K. Park, K. H. Lee, and J. H. Seo. 2004. Fed-batch production of D-ribose from sugar mixtures by transketolase-deficient Bacillus subtilis SPK1. Appl. Microbiol. Biotechnol. 66: 297-302.   DOI   ScienceOn
7 Shuler, M. L. and F. Kargi. 2002. Bioprocess Engineering: Basic Concepts, 2nd Ed. Prentice Hall.
8 Srivastava, R., S. Maiti, D. Das, P. Bapat, K. Batta, M. Bhushan, and P. Wangikar. 2012. Metabolic flexibility of Dribose producer strain of Bacillus pumilus under environmental perturbations. J. Ind. Microbiol. Biotechnol. 39: 1227-1243.   DOI   ScienceOn
9 Srivastava, R. K. and P. P. Wangikar. 2008. Combined effects of carbon, nitrogen and phosphorus substrates on D-ribose production via transketolase deficient strain of Bacillus pumilus. J. Chem. Technol. Biotechnol. 83: 1110-1119.   DOI   ScienceOn
10 Stülke, J. and W. Hillen. 2000. Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol. 54: 849-880.   DOI   ScienceOn
11 Wu, L., Z. Li, and Q. Ye. 2009. Enhanced D-ribose biosynthesis in batch culture of a transketolase-deficient Bacillus subtilis strain by citrate. J. Ind. Microbiol. Biotechnol. 36: 1289-1296.   DOI
12 Wulf, P. D. and E. J. Vandamme. 1997. Production of D-ribose by fermentation. Appl. Microbiol. Biotechnol. 48: 141-148.   DOI   ScienceOn