• 제목/요약/키워드: oxygen barrier

검색결과 326건 처리시간 0.029초

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF

Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes

  • Kim, Seon-Guk;Park, Ok-Kyung;Lee, Joong Hee;Ku, Bon-Cheol
    • Carbon letters
    • /
    • 제14권4호
    • /
    • pp.247-250
    • /
    • 2013
  • In this study, we present a facile method of fabricating graphene oxide (GO) films on the surface of polyimide (PI) via layer-by-layer (LBL) assembly of charged GO. The positively charged amino-phenyl functionalized GO (APGO) is alternatively complexed with the negatively charged GO through an electrostatic LBL assembly process. Furthermore, we investigated the water vapor transmission rate and oxygen transmission rate of the prepared (reduced GO $[rGO]/rAPGO)_{10}$ deposited PI film (rGO/rAPGO/PI) and pure PI film. The water vapor transmission rate of the GO and APGO-coated PI composite film was increased due to the intrinsically hydrophilic property of the charged composite films. However, the oxygen transmission rate was decreased from 220 to 78 $cm^3/m^2{\cdot}day{\cdot}atm$, due to the barrier effect of the graphene films on the PI surface. Since the proposed method allows for large-scale production of graphene films, it is considered to have potential for utilization in various applications.

YSZ 전해질을 이용한 농담전지식 자동차용 NOx센서 (Potentiometric NOx sensors for automotive exhaust using YSZ(yittria stabilized zirconia) electrolyte)

  • 박진수;박광철;박종욱
    • 센서학회지
    • /
    • 제16권6호
    • /
    • pp.434-440
    • /
    • 2007
  • Two kinds of new NOx sensing mechanism was proposed and examined. One of those was potentiomtric sensor based on the measurement of decomposed oxygen from NO using YSZ porous diffusion barrier and Pd catalytic electrode. The sensor based on decomposed oxygen measurement responded to the range of 300 - 1000 ppm NO in $N_{2}$ environment and the sensitivities were coincident with theoretical values at 700 and $800^{\circ}C$ but the decomposition rate depended on gas flow rate. The other sensor was equilibrium potentiometric type using $Gd_{2}O_{3}$-nitrates solid solution as sensing material. The sensor using $Gd_{2}O_{3}$-nitrates solid solution was suitable for NOxxsensing at $700^{\circ}C$ in 5 % oxygen and the sensitivity was 19.3 mV/decade. However, long term stability of the sensing material at high temperature was not sufficient.

아르곤과 산소 대기압 플라즈마 방전 효과를 이용한 살균처리 (Treatment of Ar/O2 Atmospheric Pressure Plasma for Sterilization)

  • 손향호;이원규
    • 공업화학
    • /
    • 제22권3호
    • /
    • pp.261-265
    • /
    • 2011
  • 아르곤과 산소 대기압 플라즈마를 이용한 미생물인 E. coli의 살균효과를 분석하였다. 유전체 격막 방전 형태의 플라즈마 반응기는 아르곤과 산소 혼합기체에서 균일한 플라즈마 방전과 오존 생성에 효과적이었다. 직접적인 대기압 플라즈마 조사에 따른 E. coli의 살균처리 공정에서 산소에 대한 혼합비와 인가전력의 증가는 방전기체의 오존 발생농도를 높여 미생물의 살균효과를 증가시켰다. 반응기와 시료와의 거리는 살균효과를 증가하기 위하여 가급적 작게 하는 것이 효율적이었다. 본 연구를 통하여 대기압 플라즈마는 오존과 같은 산화촉진제의 발생으로 저온에서 E. coli와 같은 미생물을 효과적으로 살균할 수 있어 기존의 살균법을 대체 할 수 있는 차세대 살균기술로서의 개발 가능성을 확인 할 수 있었다.

인쇄용 로울러에서 수용성 잉크의 산소흡수 속도에 관한연구 (Absorption Rate of Oxygen in water soluble inks on the Printing Rollers.)

  • 윤종태
    • 한국인쇄학회지
    • /
    • 제7권1호
    • /
    • pp.16-30
    • /
    • 1989
  • The anodixed aluminium film by sulfuric acid - method has many pores, the inner, called barrier layers, is active. They have strong absorption of dye. on be other, the absorption of dye is lost by Sealing, the surface is not dyed. We make IMAGE FORMATION on the film by the chemical behavior. This study made sure whether ion absorption is not in the barrier layer by IRRS and ESCA, considerated the mechanism of inage formation.

  • PDF

형성조건에 따른 TiN/Ti Barrier Metal의 Al 및 Si 과의 열적 안정성 (Thermal Stability of TiN/Ti Barrier Metals with Al Overlayers and Si Substrates Modified under Different Annealing Histories)

  • 신두식;오재응;유성룡;최진석;백수현;이상인;이정규;이종길
    • 전자공학회논문지A
    • /
    • 제30A권7호
    • /
    • pp.47-59
    • /
    • 1993
  • 16M DRAM 용 Al/Si contact 의 열적안정성을 개선하기 위하여 "stuffed" TiN/Ti diffusion barrier를 사용하였다. Diffusion barrier 로서의 특성을 개선하기 위한 Al 증착전 TiN/Ti barrier metal의 열처리 과정중 barrier metal의 두께, 열처리온도, 분위기 등을 변화시켰다. 질소분위기하에서 450도에서 TiN(900A)/Ti(300A) 박막을 열처리 하여 "stuffed" barrier metal을 형성 시켰을 경우 Al 원자의 TiN층으로의 확산의 600도에서 후속열처리한 경우 일어났으나, 700도까지도 Al-spike를 관찰할 수 없었다. 그러나 "stuffed" barrier metal을 550도에서 형성한 경우에는 600도의 후속열처리온도에서 Al이 Si 기판으로 침투했음을 관찰하였다. 박막의 두께를 얇게한 경우, 600도의 후속 열처리에서 Al-spike가 형성되었음을 확인하였다.

  • PDF

양식장 배출수에 첨가된 항생제 제거 위한 수중 비열 유전체장벽 방전 플라즈마 처리 효과 (Effect of plasma treatment using underwater non-thermal dielectric barrier discharge to remove antibiotics added to fish farm effluent)

  • 조규석;강한승
    • 환경생물
    • /
    • 제40권4호
    • /
    • pp.641-650
    • /
    • 2022
  • 본 연구의 목적은 양식장 배출수 내에 포함된 5종의 항생제(tetracycline, doxycycline, oxytetracycline, clindamycin 및 erythromycin)를 제거하기 위해 사용한 수중 비열 유전체장벽 방전 플라즈마(Dielectric Barrier Discharge plasma, DBD plasma) 장치 안으로 공기와 산소를 각각 주입했을 때 항생제의 제거효율을 비교하는 것이다. DBD plasma를 발생시키기 위해서 주어진 전압은 27.8 kV이었고, 처리간격은 0, 0.5, 1, 2, 4, 8, 16 및 32분이었다. 3종의 tetracycline계 항생제는 공기를 주입했을 때는 4분만에 유의하게 감소하였고, 산소를 주입했을 때는 30초만에 유의성을 나타내었다. 32분째 공기와 산소를 각각 주입한 결과, tetracycline은 78.1%와 95.8%, doxycycline은 77.1%와 96.3% 그리고 oxytetracycline은 77.1%와 95.5% 감소하였다. Clindamycin은 공기를 주입했을 때 59.6%가 감소되었고, 산소는 83.0% 감소되었다. 또한, erythromycin은 공기주입 시 53.3%가 감소되었고 산소 주입 시 74.3%가 감소하여 두 항생제 모두 tetracycline계 항생제보다 낮은 제거 효율을 보였다. 결론적으로 수중 DBD plasma는 양식장 배출수 내에 포함된 5종의 항생제를 감소시킬 수 있고, 제거 효율은 공기보다 산소를 주입하는 것이 더 효과적이다.

산소-플라즈마 공정에서 산화제의 생성에 대한 연구 (A Study for Oxidants Generation on Oxygen-plasma Discharging Process Discharging System)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제22권12호
    • /
    • pp.1561-1569
    • /
    • 2013
  • This study carried out a laboratory scale plasma reactor about the characteristics of chemically oxidative species (${\cdot}OH$, $H_2O_2$ and $O_3$) produced in dielectric barrier discharge plasma. It was studied the influence of various parameters such as gas type, $1^{st}$ voltage, oxygen flow rate, electric conductivity and pH of solution for the generation of the oxidant. $H_2O_2$ and $O_3$.) $H_2O_2$ and $O_3$ was measured by direct assay using absorption spectrophotometry. OH radical was measured indirectly by measuring the degradation of the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical). The experimental results showed that the effect of influent gases on RNO degradation was ranked in the following order: oxygen > air >> argon. The optimum $1^{st}$ voltage for RNO degradation were 90 V. As the increased of $1^{st}$ voltage, generated $H_2O_2$ and $O_3$ concentration were increased. The intensity of the UV light emitted from oxygen-plasma discharge was lower than that of the sun light. The generated hydrogen peroxide concentration and ozone concentration was not high. Therefore it is suggested that the main mechanism of oxidation of the oxygen-plasma process is OH radical. The conductivity of the solution did not affected the generation of oxidative species. The higher pH, the lower $H_2O_2$ and $O_3$ generation were observed. However, RNO degradation was not varied with the change of the solution pH.

Magnetism during adsorption of oxygen in Pt segregated $Pt_3Ni$ (111): Density Functional Study

  • Kumar, Sharma Bharat;Kwon, O-Ryong;Odkhuu, Dorj;Hong, Soon-Cheol
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2011년도 자성 및 자성재료 국제학술대회
    • /
    • pp.14-14
    • /
    • 2011
  • Limited understanding of the surface properties of $Pt_3Ni$ for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) has motivated the study of magnetic properties and electronic structures of Pt segregated $Pt_3Ni$ (111) surface during adsorption of oxygen molecule on it. The first principle method based on density functional theory (DFT) is carried out. Nonmagnetic Pt has induced magnetic moment due to strong hybridization between Ni 3d and Pt 5d. It is found that an oxygen molecule prefers bridge site with Pt rich subsurface environment for adsorption on the surface of Pt segregated $Pt_3Ni$ (111). It is seen that there is very small charge transfer from $O_2$ to Pt. The curve of energy versus magnetic moment of the oxygen explains the magnetic moments in transition states. We found the dissociation barrier of 1.07eV significantly higher than dissociation barrier 0.77eV on Pt (111) suggesting that the dissociation is more difficult on Pt segregated $Pt_3Ni$ (111) surface. The spin polarized densities of states are presented in order to understand electronic structures of Pt and $O_2$ during the adsorption in detail.

  • PDF