• Title/Summary/Keyword: oxidizer

Search Result 615, Processing Time 0.021 seconds

100 MWe Oxyfuel Power Plant Boiler System Process Design and Operation Parameters Sensitivity Analysis (100 MWe급 순산소연소 발전소 보일러계통 공정설계 및 운전변수 민감도 예측)

  • Baek, Sehyun;Ko, SungHo
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2013
  • The oxy-fuel combustion is $CO_2$ capture technology that uses mixture of pure $O_2$ and recirculated exhaust as oxidizer. Currently some Oxy-fuel power plants demonstration project is underway in worldwide. Meanwhile research project for converting 125 MWe Young-Dong power plant to 100 MWe oxy-fuel power plants is progress. In this paper, 1 D process analytical approach was applied for conducting process design and operating parameters sensitivity analysis for oxy-fuel combustion of Young-Dong power plant. As a result, appropriate gas recirculation rates was 74.3% that in order to maintain normal rating superheater, reheater steam temperature and boiler heat transfer patterns. And boiler efficiency 85.0%, CPU inlet $CO_2$ mole concentration 71.34% was predicted for retrofitted boiler. The oxygen concentration in the secondary recycle gas is predicted as 27.1%. Meanwhile the oxygen concentration 22.4% and moisture concentration 5.3% predicted for primary recycle gas. As the primary and secondary gas recirculation increases, then heat absorption of the reheater is tends to increases whereas superheater side is decreased, and also the efficiency is tends to decrease, according to results of sensitivity analysis for operating parameters. In addition, the ambient air ingression have a tendency to lead to decline of efficiency for boiler as well as decline of $CO_2$ purity of CPU inlet.

Concept Design of Hydro Reactive Solid Propellant for Underwater High Speed Ramjet Engine System (수(水)반응성 고체추진제를 이용한 수중고속램제트엔진 시스템 개념 설계)

  • Chae Jae-Ou;Sim Ju-Hyen;Kwak Yong-Whan;Koo Hyung-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.121-131
    • /
    • 2005
  • For thrust motion of high speed underwater torpedo the special hydro reactive fuels that burns in vapor water and water supply from aboard is used. The main component of this hydro reactive fuel is the powder of active metal (Mg, Al) that can burn in water vapor with large heat generation in the rocket combustion chamber. The thermodynamic analysis of combustion properties of the burning of the particles of these active metal in the vapor water have been carried out. The conception for the possible content variants of the hydro reactive fuels have been discussed using the geometrical and thermodynamic combustion conditions with the basic recommendation for contents of designed hydro reactive fuels in future.

  • PDF

Ignition Characteristics of Aluminum Metal Powder Fuel with Thermal Plasma (플라즈마를 이용한 분말형 금속 연료 알루미늄의 점화 특성)

  • Lee, Sang-Hyup;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.737-744
    • /
    • 2011
  • The success of continuous aluminum powder combustion with steam plasma is different from hydrocarbon ignition source. Ignition characteristics of aluminum powder with high temperature thermal plasma is studied with oxidizer-free environment. Experiment with argon plasma has same temperature conditions at 4500 K and particle feeding condition for previous combustion test with steam plasma and swirl combustor. The temperature of the plasma was measured using Optical Emission Spectroscopy method. Ignition characteristics were analyzed by SEM image and EDS. Aluminum powder with plasma has rapid evaporation mechanism contrast to hydrocarbon ignition source. It enhances to aluminum powder effective ignition characteristics.

  • PDF

Design and Verification of a Injector using Gas Methane and LOx as Propellants (가스메탄/액체산소를 추진제로 하는 인젝터 설계 및 설계 검증)

  • Jang, Jee-Hun;Min, Ji-Hong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.877-880
    • /
    • 2011
  • A coaxial swirl/shear injector using GCH4/LOx as propellants was degisned and manufactured. Flow analysis by Fluent was performed to decide the number of orifice and the rear shapes of inlet orifice etc. Flow rate of the injector was measured according to differential pressure and uniformity of injector's spray pattern was confirmed by a patternator. The results showed that the difference of flow rate was around 10% and the spray angle of oxidizer was $66^{\circ}$.

  • PDF

Design and Verification of a Injector using Gas Methane and LOx as Propellants (가스메탄/액체산소를 추진제로 하는 인젝터 설계 및 설계 검증)

  • Jang, Jee-Hun;Min, Ji-Hong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.658-661
    • /
    • 2011
  • A coaxial swirl/shear injector using GCH4/LOx as propellants was degisned and manufactured. Flow analysis by Fluent was performed to decide the number of orifice and the rear shapes of inlet orifice etc. Flow rate of the injector was measured according to differential pressure and uniformity of injector's spray pattern was confirmed by a patternator. The results showed that the difference of flow rate was around 10% and the spray angle of oxidizer was $66^{\circ}$.

  • PDF

Auto-ignition Characteristics of Paraffin and PE Hybrid Rocket with $H_2O_2$ Catalytic Decomposition (과산화수소 촉매 분해를 이용한 파라핀 및 PE 하이브리드 로켓의 자연 점화 특성)

  • An, Sung-Yong;Jin, Jung-Kun;Jung, Eun-Sang;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.48-56
    • /
    • 2009
  • The auto-ignition tests of hybrid rockets with the concentrated hydrogen peroxide as an oxidizer were presented. Auto-ignition was successfully demonstrated by injecting decomposed gases from $H_2O_2$ into paraffin or polyethylene fuels. In addition, restart and instant ignition were realized with this rocket. For stable combustion, a higher $L^*$ value was required for the paraffin combustion compared with PE. On the other hand, much faster response time was demonstrated in case of a paraffin, which was 13 and 30 ms at ignition delay and rise time respectively.

Numerical Study on Non-premixed Methane Flames in Twin-jet Counterflow (Twin-jet 대향류에서 메탄 비예혼합화염에 대한 수치적 연구)

  • Chun, K.W.;Kim, J.H.;Chung, C.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.49-56
    • /
    • 2004
  • A two-dimensional twin-jet counterflow system has been designed, in which two streams from two double-slit nozzles form a counterflow. This flow system enables one to systematically investigate various effects on non-premixed flames, including the non-premixed flame interaction, the edge flame behavior and the effect of curvature. Non-premixed flame interaction in the twin-jet counterflow system has been investigated numerically for methane fuel diluted with nitrogen. Three types of non-premixed flame(conventional counterflow flame, crossed twin-jet flame and petal shaped flame) were simulated depending on the combination of fuel/oxidizer supply to each nozzle. The extinction characteristics of non premixed methane flame in the twin-jet counterflow have been investigated numerically. The boundary of the existence of petal-shaped flames was identified for the twin-jet counterflow flames. Due to the existence of the unique petal-shaped flames, the extinction boundary for the twin-jet counterflow can be extended significantly compared to that for the conventional counterflow non-premixed flames, through the interaction of two flames. Through the comparison of the crossed twin-jet flame and the conventional counterflow flame, structure of the crossed twin-jet counterflow flame is analysed. Through the comparison of the petal shaped flame and the conventional counterflow flame, the extension of the extinction boundary for the twin-jet counterflow is investigated.

  • PDF

An Experimental Study on Mode Switching from Air-firing to Oxy-firing in Pilot-scale Combustion Systems (미분탄 순산소 연소 운전 모드 전환 과정에 대한 Pilot 규모 설비에서의 실험적 연구)

  • Choi, Chong-Gun;Na, Ik-Hwan;Lee, Jae-Wook;Chae, Tae-Young;Yang, Won;Kim, Young-Ju;Kim, Jong-An;Seo, Sang-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.3
    • /
    • pp.12-20
    • /
    • 2011
  • Oxy-coal combustion for $CO_2$ capture in coal power plants entails a mode switching from air-firing to oxyfiring. In this study, procedure of the mode switching was investigated and discussed through experiments in pilot scale facilities: (1) a 0.3 $MW_{th}$ furnace with a vertical single burner and a FGR(Flue Gas Recirculation) system (2) a 1 $MW_{th}$ furnace with horizontal 4 burners and a FGR system. Principle of the mode switching was established and performed with control of FD fan, FGR fan, ID fan and oxygen flow rates. We have found that equivalence ratio in the oxy-firing mode should be increased more than that in the air-firing to achieve stable mode switching. Control of FD, ID and FGR fans should be performed carefully in the mode switching, in the sense of complete combustion and flame attachment. Moisture contents in the ash and the flue gas recycled to the primary oxidizer stream should be removed to prevent condensation, corrosion and duct clogging.

Investigation of the Cryogenic Oxidizer Tank Inner Phenomena of Pump-fed Liquid Rocket Engine Propulsion System (터보펌프식 액체추진기관에서의 극저온 산화제 탱크 내부 현상 고찰)

  • 조남경;권오성;정용갑;조인현;김영목;조기주;정영석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.238-241
    • /
    • 2003
  • In case of liquid rocket using turbopump, the inner pressure of liquid oxygen tank is maintained low, so vaporization of LOX is generally occurred. This vaporization tendency increases as the inlet helium gas temperature is higher. For estimating the amount of helium in the rocket system, the LOX vaporization phenomena should be carefully considered. In this paper, Inner process of LOX tank is analyzed by two phase flow modeling. the vaporization rate and required Helium mass is investigated with varying inlet helium temperature and heat transfer coefficient.

  • PDF

Modeling of Non-Equilibrium Kinetics in Gas Generator including Soot Formation (Soot 생성을 고려한 가스발생기의 Kerosene/LOx의 비평형 화학반응 모델링)

  • Yu, Jung-Min;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.150-153
    • /
    • 2006
  • Gas generator should be adopted either fuel rich or oxidizer rich combustion because of the temperature restriction to avoid any possible thermal damages to turbine blade. This study focuses to model the non-equilibrium chemical reaction of kerosene/LOx with detailed kinetics developed by Dagaut using Perfectly stirred reactor(PSR) assumption. To predict more reliable species fraction and other gas properties, Frenklach's soot model was added to Dagaut's detailed kinetics.

  • PDF