• Title/Summary/Keyword: oxide pattern

Search Result 385, Processing Time 0.02 seconds

The Characteristics of Wet Etch Process for Sub-micron Channel pattern with High Aspect Ratios (고 종횡비의 미세 채널 패턴에서의 습식 식각 특성 분석)

  • Lee, Chun-Su;Choe, Sang-Su;Baek, Jong-Tae;Yu, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.208-214
    • /
    • 1995
  • In order to study on the penetrations of HF solution acording to the geometrical shrinkage of contact-hole pattern size, the wet etch characteristics for oxide in microchannel patterns was investigated. Microchannel patterns of LPCVD oxide surrounded by nitride film, with dimensions of 0.1~1$\mu\textrm{m}$ height and 0.1~20$\mu\textrm{m}$, width, were fabricated. And the etch rates of oxide in HF solution were observed. It was found that oxide etch rate for micro-channel patterns in HF was not affected by pattern sizes and initial aspect ratios up to $0.1 \times 0.1 \mu \textrm{m}^{2} size and 1.2$\mu\textrm{m}$ depth. Finally, it was concluded that there were no special limitations for penetrations of HF solution in wet processes according to the geometrical shrinkage of contact-hole pattern size.

  • PDF

A Study on the Fabrication of Nano Pattern using a Nickel Stamper Replicated from Anodic Aluminum Oxide (Anodic Aluminum Oxide 기반 니켈 스탬퍼를 이용한 나노패턴 성형에 관한 연구)

  • Kim, S.;Kim, J.S.;Hong, S.K.;Kim, H.J.;Yoon, K.H.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • For the fabrication of nano patterned products manufacturing a nano patterned mold is needed in advance. The nano patterned stamper was fabricated by electroforming the AAO master with nickel. The surface of nickel-plated stamper had nano-patterned holes with the diameter of 73 nm and the depth of 83 nm. Hot embossing was used for forming P3HT sheet and the process factors of hot embossing were closer as pressure, temperature and time. In the present paper hot embossing experiments were performed to find the main process conditions to affect the replication ratio of nano patterns on surface of P3HT sheet. As a result, main contributing factors for the replication ratio of hot embossed pattern could be sequentially enumerated as pressure, temperature and time.

A Study on the High Selective Oxide Etching using Inductively Coupled Plasma Source (유도결합형 플라즈마원을 이용한 고선택비 산화막 식각에 관한 연구)

  • 이수부;박헌건;이석현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.261-266
    • /
    • 1998
  • In developing the high density memory device, the etching of fine pattern is becoming increasingly important. Therefore, definition of ultra fine line and space pattern and minimization of damage and contamination are essential process. Also, the high density plasma in low operating pressure is necessary. The candidates of high density plasma sources are electron cyclotron resonance plasma, helicon wave plasma, helical resonator, and inductively coupled plasma. In this study, planar type magnetized inductively coupled plasma etcher has been built. The density and temperature of Ar plasma are measured as a function of rf power, flow rate, external magnetic field, and pressure. The oxide etch rate and selectivity to polysilicon are measured as the above mentioned conditions and self-bias voltage.

  • PDF

Component Profile Analysis of Irradiated Korean White Ginseng Powder (방사선 조사 인삼의 성분변화에 관한 분석)

  • 한병훈;한용남
    • Journal of Ginseng Research
    • /
    • v.19 no.2
    • /
    • pp.138-143
    • /
    • 1995
  • Currently, some food materials are disinfected by $\gamma$-irradiation (using Co-60) or ethylene oxide treatment. These treatments were applied to ginseng powder and the ginseng components such as ginsenosides, polyacetylenes and phenolic acids were analyzed by HPLC to determine any compositional changes due to irradiation. No appreciable difference was observed in the HPLC pattern of ginsenosides, polyacetylenes of ginseng powder after 10 key irradiation or ethylene oxide treatment (EO $CO_2$= 3 : 7, w/wfb) from those of untreated fresh ginseng powder when they were analyzed soon after treatments. When the ginseng powders were stored at room temperature for three years after the same treatment, the HPLC patterns of polyacetylenes and phenolic acid fraction showed appreciable change from those of fresh ginseng powder, however, the HPLC patterns of three year old samples did not show any appreciable difference.

  • PDF

Selective Graphene Oxide Reduction Utilizing Photon Energy (광에너지를 활용한 선택적 산화그래핀의 환원)

  • Shin, Jae-Soo;Choi, Eunmi
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.16-20
    • /
    • 2018
  • Graphene is attracting attention due to its outstanding properties as line material for next-generation semiconductor. Graphene pattern technology is essential to apply graphene line. Selective graphene oxide reduction as one of graphene pattern method does not require a substrate thereby a high flexibility device can be applied. Particularly, the method using photon energy has advantages of short process time and environment friendly. In this review, we introduce the photocatalytic method and the photo-thermal energy conversion method using photon energy in the selective reduction process of graphene oxides.

Characteristic Classification of Aroma Oil with Gas Sensors Array and Pattern Recognition (가스센서 어레이와 패턴인식을 활용한 아로마 오일의 특성 분류)

  • Choi, Il-Hwan;Hong, Sung-Joo;Kim, Sun-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.118-125
    • /
    • 2018
  • An evaluation system for an electronic-nose concept using three types of metal oxide gas sensors that react similarly to the human olfactory cells was constructed for the quantitative and qualitative evaluation of aroma fragrances. Four types of aroma fragrances (lavender, orange, jasmine, and Roman chamomile), which are commonly used in aromatherapy, were evaluated. All the gas sensors reacted remarkably to the aroma fragrances and the good correlation of r=0.58-0.88 with the aromatic odor intensities by olfaction was confirmed. From the results of the analysis of an electronic-nose concept for classifying the characteristics of aroma oil fragrances, aroma oils could be classified using the fragrance characteristics and oil extraction methods with the cumulative variability contribution rate of 95.65% (F1: 69.65%, F2: 26.03%) by principal component analysis. In the pattern recognition based on the artificial neural network, the four aroma fragrances were 100% recognized through the training data of 56 cases (70%) out of 80 cases, and the pattern recognition rate was 57.1%-71.4% through the validation and testing data of 24 cases (30%). The pattern recognition success rate through all confusion matrices was 82.1%, indicating that the classification of aroma oil fragrances using the three types of gas sensors was successful.

A Study on Pattern Analysis of Odorous Substances with a Single Gas Sensor

  • Kim, Han-Soo;Choi, Il-Hwan;Kim, Sun-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.423-430
    • /
    • 2016
  • This study used a single metal oxide semiconductor (MOS) sensor to classify the major odorous gases hydrogen sulfide ($H_2S$), ammonia ($NH_3$) and toluene ($C_6H_5CH_3$). In order to classify these odorous substances, the voltage on the MOS sensor heater was gradually reduced in 0.5 V steps 5.0 V to examine the changes to the response by the cooling effect on the sensor as the voltage decreased. The hydrogen sulfide gas showed the highest sensitivity compared to odorless air under approximately 2.5 V and the ammonia and toluene gases showed the highest sensitivity under approximately 5.0 V. In other words, the hydrogen sulfide gas reacted better in the low temperature range of the MOS sensor, and the ammonia and toluene gases reacted better in the high-temperature range. In order to analyze the response characteristics of the MOS sensor by temperature in a pattern, a two-dimensional (2D) x-y pattern analysis was introduced to clearly classify the hydrogen sulfide, ammonia, and toluene gases. The hydrogen sulfide gas was identified by a straight line with a slope of 1.73, whereas the ammonia gas had a slope of 0.05 and the toluene gas had a slope of 0.52. Therefore, the 2D x-y pattern analysis is suggested as a new way to classify these odorous substances.

Development of multi-cell flows in the three-layered configuration of oxide layer and their influence on the reactor vessel heating

  • Bae, Ji-Won;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.996-1007
    • /
    • 2019
  • We investigated the influence of the aspect ratio (H/R) of the oxide layer on the reactor vessel heating in three-layer configuration. Based on the analogy between heat and mass transfers, we performed mass transfer experiments to achieve high Rayleigh numbers ranging from $6.70{\times}10^{10}$ to $7.84{\times}10^{12}$. Two-dimensional (2-D) semi-circular apparatuses having the internal heat source were used whose surfaces of top, bottom and side simulate the interfaces of the oxide layer with the light metal layer, the heavy metal layer, and the reactor vessel, respectively. Multi-cell flow pattern was identified when the H/R was reduced to 0.47 or less, which promoted the downward heat transfer from the oxide layer and possibly mitigated the focusing effect at the upper metallic layer. The top boundary condition greatly affected the natural convection of the oxide layer due to the presence of secondary flows underneath the cold light metal layer.

A Study for the Improvement of Torn Oxide Defects in Shallow Trench Isolation-Chemical Mechanical Polishing (STI-CMP) Process (STI--CMP 공정에서 Torn oxide 결함 해결에 관한 연구)

  • 서용진;정헌상;김상용;이우선;이강현;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • STI(shallow trench isolation)-CMP(chemical mechanical polishing) process have been substituted for LOCOS(local oxidation of silicon) process to obtain global planarization in the below sub-0.5㎛ technology. However TI-CMP process, especially TI-CMP with RIE(reactive ion etching) etch back process, has some kinds of defect like nitride residue, torn oxide defect, etc. In this paper, we studied how to reduced torn oxide defects after STI-CMP with RIE etch back processed. Although torn oxide defects which can occur on trench area is not deep and not severe, torn oxide defects on moat area is not deep and not severe, torn oxide defects on moat area is sometimes very deep and makes the yield loss. Thus, we did test on pattern wafers which go through trench process, APECVD process, and RIE etch back process by using an IPEC 472 polisher, IC1000/SUVA4 PAD and KOH base slurry to reduce the number of torn defects and to study what is the origin of torn oxide defects.

  • PDF

Fabrication of Nanometer-sized Pattern on PMMA Plate Using AAO Membrane As a Template for Nano Imprint Lithography (AAO 나노기공을 나노 임프린트 리소그래피의 형틀로 이용한 PMMA 나노패턴 형성 기술)

  • Lee, Byoung-Wook;Hong, Chin-Soo;Kim, Chang-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.420-425
    • /
    • 2008
  • PMMA light guiding plate with nano-sized pattern was fabricated using anodized aluminum oxide membrane as a template for nano imprint lithography. Nano-sized pore arrays were prepared by the self-organization processes of the anodic oxidation using the aluminum plate with 99.999% purity. Since the aluminum plate has a rough surface, the aluminum plate with thickness of 1mm was anodized after the pre-treatments of chemical polishing, and electrochemical polishing. The surface morphology of the alumina obtained by the first anodization process was controlled by the concentration of electrochemical solution during the first anodization. The surface morphology of the alumina was also changed according to temperature of the solution during chemical polishing performed after first anodization. The pore widening process was employed for obtaining the one-channel with flat surface and height of the channel because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of two-channel with rough surface. It is shown from SPM results that the nano-sized pattern on PMMA light guiding plate fabricated by nano imprint lithography method was well transferred from that of anodized aluminum oxide template.