Browse > Article

Selective Graphene Oxide Reduction Utilizing Photon Energy  

Shin, Jae-Soo (Department of Advanced Materials Engineering, Daejeon University)
Choi, Eunmi (Center for Materials and Energy Measurement, Korea Research Institute of Standards and Science)
Publication Information
Journal of the Semiconductor & Display Technology / v.17, no.4, 2018 , pp. 16-20 More about this Journal
Abstract
Graphene is attracting attention due to its outstanding properties as line material for next-generation semiconductor. Graphene pattern technology is essential to apply graphene line. Selective graphene oxide reduction as one of graphene pattern method does not require a substrate thereby a high flexibility device can be applied. Particularly, the method using photon energy has advantages of short process time and environment friendly. In this review, we introduce the photocatalytic method and the photo-thermal energy conversion method using photon energy in the selective reduction process of graphene oxides.
Keywords
Graphene Oxide; Graphene Patterning; Photon-reduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, J, H., "A Study of Dynamic Properties of Graphene-Nanoribbon Memory," Journal of the Semiconductor & Display Technology, Vol. 13, pp. 53-56, 2014.
2 Di, Bartolomeo, A., "Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction," Physics Reports, Vol. 606, pp. 1-58, 2016.   DOI
3 Cheng, R., Bai, J., Liao, L., Zhou, H., Chen, Y., Liu, L., and et al., "High-frequency self-aligned graphene transistors with transferred gate stacks," Proceedings of the National Academy of Sciences, Vol. 109(29), pp. 11588-92. 2012.   DOI
4 Feng, Z., Yu, C., Li, J., Liu, Q., He, Z., Song, X., and et al., "An ultra clean self-aligned process for high maximum oscillation frequency graphene transistors," Carbon, Vol. 75, pp. 249-54, 2014.   DOI
5 Yoo, J, H., Park, J, B., Ahn, S., and Grigoropoulos, C, P., "Laser-Induced Direct Graphene Patterning and Simultaneous Transferring Method for Graphene Sensor Platform," Small, Vol. 9(24), pp. 4269-75, 2013.   DOI
6 Cabrero-Vilatela, A., Weatherup, R, S., Braeuninger-Weimer, P., Caneva, S., and Hofmann , S., "Towards a general growth model for graphene CVD on transition metal catalysts," Nanoscale, Vol. 8(4), pp. 2149-58, 2016.   DOI
7 Kumar, P., Subrahmanyam, K., and Rao, C., "Graphene patterning and lithography employing laser/electron-beam reduced graphene oxide and hydrogenated graphene," Materials Express, Vol. 1(3), pp. 252-6, 2011.   DOI
8 Yong, K., Ashraf, A., Kang, P., and Nam, S., "Rapid stencil mask fabrication enabled one-step polymer-free graphene patterning and direct transfer for flexible graphene devices," Scientific reports, Vol. 6, pp. 24890, 2016.   DOI
9 Bell, D, C., Lemme, M, C., Stern, L, A., Williams, J, R., and Marcus, C, M., "Precision cutting and patterning of graphene with helium ions," Nanotechnology, Vol. 20(45), pp. 455301, 2009.   DOI
10 Murali, R., Yang, Y., Brenner, K., Beck, T., and Meindl, J, D., "Breakdown current density of graphene nanoribbons," Applied Physics Letters, Vol. 94(24), pp. 243114, 2009.   DOI
11 Tung, V, C., Allen, M, J., Yang, Y., and Kaner, R, B., "High-throughput solution processing of large-scale graphene," Nature Nanotechnology, Vol. 4(1), pp. 25-9, 2009.   DOI
12 Bower, W., Head, W., Droop, G., Zan, R., Pattrick, R., Wincott, P., and et al., "High-resolution imaging of biotite using focal series exit wavefunction restoration and the graphene mechanical exfoliation method," Mineralogical Magazine, Vol. 79(2), pp. 337-44, 2015.   DOI
13 Novotny, Z., Netzer, F, P., and Dohnalek, Z., "Cerium Oxide Nanoclusters on Graphene/Ru (0001): Intercalation of Oxygen via Spillover," ACS Nano, Vol. 9(8), pp. 8617-26, 2015.   DOI
14 Choi, E., Chae, S, J., Kim, A., Kang, K, W., Oh, M, S., Kwon, S, H., and et al., "Hybrid Electrodes of Carbon Nanotube and Reduced Graphene Oxide for Energy Storage Applications," Journal of nanoscience and nanotechnology, Vol. 15(11), pp. 9104-9, 2015.   DOI
15 Choi, E., Kim, J., Chae, S, J., Kim, A., Pyo, S, G., and Yoon, S., "Performance of Graphene-Based Anode Using Chemically Reduced Nanocomposite Formation," Science of Advanced Materials, Vol. 7(12), pp. 2755-9, 2015.   DOI
16 Qi, Z, J., Rodriguez-Manzo, J, A., Hong, S, J., Park, Y, W., Stach, E, A., Drndic, M., and et al. editors., "Direct electron beam patterning of sub-5nm monolayer graphene interconnects," SPIE Advanced Lithography, Vol. 8680, pp. 86802F 1-6, 2013.
17 Zhou, M., Wang, Y., Zhai, Y., Zhai, J., Ren, W., Wang, F., and et al., "Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films," Chemistry-A European Journal, Vol. 15(25), pp. 6116-20, 2009.   DOI
18 Fan, W., Lai, Q., Zhang, Q., and Wang, Y., "Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution," The Journal of Physical Chemistry C, Vol. 115(21), pp. 10694-701, 2011.   DOI
19 Wang, P., Wang, J., Ming, T., Wang, X., Yu, H., Yu, J., and et al., "Dye-sensitization-induced visible-light reduction of graphene oxide for the enhanced TiO2 photocatalytic performance," ACS Applied Materials & Interfaces, Vol. 5(8), pp. 2924-9, 2013.   DOI
20 Kawahara, T., Konishi, Y., Tada, H., Tohge, N., Nishii, J., and Ito, S., "A Patterned TiO2 (Anatase)/TiO2 (Rutile) Bilayer-Type Photocatalyst: Effect of the Anatase/Rutile Junction on the Photocatalytic Activity," Angewandte Chemie, Vol. 114(15), pp. 2935-7, 2002.   DOI
21 Hosokawa, Y., Yashiro, M., Asahi, T., and Masuhara, H., "Photothermal conversion dynamics in femtosecond and picosecond discrete laser etching of Cuphthalocyanine amorphous film analysed by ultrafast UV-VIS absorption spectroscopy," Journal of Photochemistry and Photobiology A: Chemistry, Vol. 142(2), pp. 197-207, 2001.   DOI
22 Radich, J, G., Krenselewski, A, L., Zhu, J., and Kamat, P, V., "Is graphene a stable platform for photocatalysis? Mineralization of reduced graphene oxide with UV-irradiated TiO2 nanoparticles," Chemistry of Materials, Vol. 26(15), pp. 4662-8, 2014.   DOI
23 Williams, G., Seger, B., and Kamat, PV., "TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide," ACS Nano, Vol. 2(7), pp. 1487-91, 2008.   DOI
24 Karampelas, I, H., Furlani, E, P., and editors., "Analysis of Pulsed-laser Plasmon-enhanced Photothermal Energy Transfer with Applications," The 16th Annual Graduate Student Research Symposium, 2013.
25 Cote, L, J., Cruz-Silva, R., and Huang, J., "Flash reduction and patterning of graphite oxide and its polymer composite," Journal of the American Chemical Society, Vol. 131(31), pp. 11027-32, 2009.   DOI
26 Zhou, Y., Bao, Q., Varghese, B., Tang, L, A, L., Tan, C, K., Sow, C, H., and et al., "Microstructuring of graphene oxide nanosheets using direct laser writing," Advanced Materials, Vol. 22(1), pp. 67-71, 2010.   DOI
27 Al-Hamry, A., Kang, H., Sowade, E., Dzhagan, V., Rodriguez, R., Muller, C., and et al., "Tuning the reduction and conductivity of solution-processed graphene oxide by intense pulsed light," Carbon, Vol. 102, pp. 236-44, 2016.   DOI
28 Guo, H., Peng, M., Zhu, Z., and Sun, L., "Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction," Nanoscale, Vol. 5(19), pp. 9040-8, 2013.   DOI