• Title/Summary/Keyword: oxide electrode

Search Result 1,147, Processing Time 0.03 seconds

Preparation and application of reduced graphene oxide as the conductive material for capacitive deionization

  • Nugrahenny, Ayu Tyas Utami;Kim, Jiyoung;Kim, Sang-Kyung;Peck, Dong-Hyun;Yoon, Seong-Ho;Jung, Doo-Hwan
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.38-44
    • /
    • 2014
  • This paper reports the effect of adding reduced graphene oxide (RGO) as a conductive material to the composition of an electrode for capacitive deionization (CDI), a process to remove salt from water using ionic adsorption and desorption driven by external applied voltage. RGO can be synthesized in an inexpensive way by the reduction and exfoliation of GO, and removing the oxygen-containing groups and recovering a conjugated structure. GO powder can be obtained from the modification of Hummers method and reduced into RGO using a thermal method. The physical and electrochemical characteristics of RGO material were evaluated and its desalination performance was tested with a CDI unit cell with a potentiostat and conductivity meter, by varying the applied voltage and feed rate of the salt solution. The performance of RGO was compared to graphite as a conductive material in a CDI electrode. The result showed RGO can increase the capacitance, reduce the equivalent series resistance, and improve the electrosorption capacity of CDI electrode.

Graphene Oxide as a Novel Nanoplatform for Direct Hybridization of Graphene-SnO2

  • Park, Hun;Han, Tae Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3269-3273
    • /
    • 2013
  • Graphene oxide (GO) has been of particular interest because it provides unique properties due to its high surface area, chemical functionality and ease of mass production. GO is produced by chemical exfoliation of graphite and is decorated with oxygen-containing groups such as phenol hydroxyl, epoxide groups and ionizable carboxylic acid groups. Due to the presence of those functional groups, GO can be utilized as a novel platform for hybrid nanocomposites in chemical synthetic approaches. In this work, GO-$SnO_2$ nanocomposites have been prepared through the spontaneous formation of molecular hybrids. When $SnO_2$ precursor solution and GO suspension were simply mixed, $Sn^{2+}$ was spontaneously formed into $SnO_2$ nanoparticles upon the deoxygenation of GO. Through further chemical reduction by adding hydrazine, reduced GO-$SnO_2$ hybrid was finally created. Our investigation for the electrocapacitive properties of hybrid electrode showed the enhanced performance (389 F/g), compared with rGO-only electrode (241 F/g). Our approach offers a scalable, robust synthetic route to prepare graphene-based nanocomposites for supercapacitor electrode via spontaneous hybridization.

Electrical Characteristics of 500V LIGBT for Intelligent Power ICs (인텔리전트 파워 IC용 500V급 LIGBT의 전기적 특성에 관한 연구)

  • Kang, Ey-Goo;Sul, Won-Ji;Seo, Hyun-Ju;Kim, Hyun-Mi;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.183-184
    • /
    • 2005
  • In this paper. a new small size Lateral Trench Electrode Power IGBT is proposed. The entire electrode of proposed LIGBT is placed in trench oxide. The forward blocking voltage of the proposed LIGBT is improved by 1.6 times with that of the conventional LIGBT. The forward blocking voltage of proposed LIGBT is 500V. At the same size. a increase of the forward blocking voltage of about 1.6 times relative to the conventional LIGBT is observed by using TMA-MEDICI which is used for analyzing device characteristics. Because the electrodes of the proposed device are formed in trench oxide. the electric field in the device are crowded to trench oxide. We observed that the characteristics of i the proposed device was improved by using TMA-MEDICI and that the fabrication of the proposed device is possible by using TMA-TSUPREM4.

  • PDF

Study of ITO/ZnO/Ag/ZnO/ITO Multilayer Films for the Application of a very Low Resistance Transparent Electrode on Polymer Substrate

  • Han, Jin-Woo;Han, Jeong-Min;Kim, Byoung-Yong;Kim, Young-Hwan;Kim, Jong-Yeon;Ok, Chul-Ho;Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.798-801
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided (ITO)/zinc oxide (ZnO)/Ag/zinc oxide (ZnO)/ITO. With about 50 nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550 nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.

The Manganese Oxide which has Modified Electrochemically Affects in Oxygen Reduction Reaction (전기화학적으로 석출된 망간 산화물이 산소 환원 반응에 미치는 영향)

  • Park, Sung-Ho;Shin, Hyun-Soo;Kim, Jeong-Sik;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • This study is concerned the electrocatalytic generation of oxygen gas at electrochemically deposited manganese oxide electrode in KOH solution. Manganese oxide nanoparticles electrodeposited onto relatively substrate, e.g glassy carbon, Au, Ti electrode. MnOx is electrodeposited in nanorod structure which cover the overall surface of the substrate. The $\gamma$-MnOOH that is kind of manganese oxide species plays a significant role as a catalytic mediator, which promote 4-electron reduction process. Modified electrodes with electrodeposited manganese oxide structures resulted in significant decrease in the anodic polarization compared with the unmodified electrodes in alkaline media.

Nanowire-Like Copper Oxide Grown on Porous Copper, a Promising Anode Material for Lithium-Ion Battery

  • Park, Hyeji;Lee, Sukyung;Jo, Minsang;Park, Sanghyuk;Kwon, Kyungjung;Shobana, M.K.;Choe, Heeman
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.438-442
    • /
    • 2017
  • This paper reports the facile synthesis of microlamella-structured porous copper (Cu)-oxide-based electrode and its potential application as an advanced anode material for lithium-ion batteries (LIBs). Nanowire-like Cu oxide, which is created by a simple thermal oxidation process, is radially and uniformly formed on the entire surface of Cu foam that has been fabricated using a combination of water-based slurry freezing and sintering (freeze casting). Compared to the Cu foil with a Cu oxide layer grown under the same processing conditions, the Cu foam anode with 63% porosity exhibits over twice as much capacity as the Cu foil (264.2 vs. 131.1 mAh/g at 0.2 C), confirming its potential for use as an anode electrode for LIBs.

Effect of Ni addition on anodically deposited $MnO_2$ film (Anodic deposition된 $MnO_2$ 막에 있어서 Ni 첨가 영향)

  • Kim, Bong-Seo;Lee, Dong-Yoon;Lee, Hee-Woong;Chung, Won-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1535-1537
    • /
    • 2003
  • Manganese oxide electrode was designed to improve electrical conductivity for dimensionally stable anode(DSA) using discreet variation (DV)-X${\alpha}$ method. It was calculated in DV-X${\alpha}$ method that the addition of nickel to manganese oxide reduce the energy band gap of manganese oxide electrode. Therefore, it is estimated that nickel in 3 additive elements of Ti, Ni and Sn is the best candidate to improve the electrical conductivity of manganese oxide. The anodically deposited manganese oxide which was produced in 0.2M $MnSO_4$ and 0.2M (Mn,Ni)$SO_4$ solution had $MnSO_4$ structure which was identified by XRD. The $MnSO_4$ films produced in both solutions over than 50mA/$cm^2$ of current density and long deposition time of 600sec showed low adhesion with Ti substrate.

  • PDF

ITO/ZnO/Ag/ZnO/ITO Multilayers Films for the Application of a Very Low Resistance Transparent Electrode on Polymer Substrate

  • Ok, Chul-Ho;Han, Jin-Woo;Kim, Jong-Yeon;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.397-397
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided(ITO)/zinc oxide(ZnO)/Ag/oxide(ZnO)/ITO. With about 50nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.

  • PDF

A Study on the Fabrication of Lithium Iron Oxide Electrode and its Cyclic Voltammetric Characteristics (리튬-철 산화물 전극의 제조 및 전류전위 순환 특성에 관한 연구)

  • Jeong Won-Joong;Ju Jeh-Beck;Sohn Tai-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.156-162
    • /
    • 1999
  • Various types of iron oxide based materials as a cathode of lithium secondary battery have been prepared and their electrochemical characteristics have been also observed. In order to understand the fundamental characteristics of iron oxide electrode, three kinds of iron oxides such as iron oxides formed by direct oxidation of iron plate or iron powders and FeOOH powders were tested with cyclic voltammetry. The oxidation and reduction peaks due to the reaction of intercalation and deintercalation were not observed for the iron oxide prepared with iron plate and FeOOH powders. In case of iron oxide prepared from iron powders, only one reduction peak was observed. A layered form of $LiFeO_2$ was synthesized directly from $FeCl_3\cdot6H_2O,\;NaOH\;and\;LiOH$ and LiOH by hydrothermal reaction. The effect of NaOH on the electrode performance was examined. When increasing NaOH, it provides the electrode with less discharge capacity and efficiency, however, decreasing rate of discharge capacity became smaller. $LiFeO_2$ synthesized with the molar ratio of $NaOH/FeCl_3/LiOH$, 2/1/7 showed the largest capacity, but the discharging efficiency was sharply decreased after 30 cycles.

Fabrication and Characteristics of Indium Tin Oxide Films on CR39 Substrate for OTFT

  • Kwon, Sung-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.267-270
    • /
    • 2006
  • The Indium tin oxide (ITO) films were deposited on CR39 substrate using DC magnetron sputtering. ITO thin films deposited at room temperature because CR39 substrates its glass-transition temperature of is $130^{\circ}C$. ITO thin films used bottom and top electrode and for organic thin film transparent transistor.(OTFT) ITO thin film electrodes electrical properties and optical transparency properties in the visible wavelength range (300 - 800 nm) strongly dependent on volume of oxygen percent. For the optimum resistivity and transparency of ITO thin film electrode achieved with a 75 W plasma power, 10 % volume of oxygen and a 27 nm/min deposition rate. Above 85 % transparency in the visible wavelength range (300 - 800 nm) measured without post annealing process and $9.83{times}10{-4}{\Omega}cm$ a low resistivity was measured thickness of 300 nm.