• Title/Summary/Keyword: oxide cathode

검색결과 436건 처리시간 0.027초

La(Sr)Fe(Co)O3-δ 침지법을 이용한 양극 지지형 SOFC 제조 및 출력 특성 (Characterization and Fabrication of La(Sr)Fe(Co)O3-δ Infiltrated Cathode Support-Type Solid Oxide Fuel Cells)

  • 황국진;김민규;김한빛;신태호
    • 한국전기전자재료학회논문지
    • /
    • 제32권6호
    • /
    • pp.501-506
    • /
    • 2019
  • To overcome the limitations of the conventional Ni anode-supported SOFCs, various types of ceramic anodes have been studied. However, these ceramic anodes are difficult to commercialize because of their low cell performances and difficulty in manufacturing anode-support typed SOFCs. Therefore, in this study, to use these ceramic anodes and take advantage of anode-supported SOFC, which can minimize ohmic loss from the thin electrolyte, we fabricated cathode support-typed SOFC. The cathode-support of LSCF-YSZ was prepared by the acid treatment of conventional Ni-YSZ (Yttria-stabilized Zirconia) anode-support, followed by the infiltration of LSCF to YSZ scaffold. The composite of $La(Sr)Ti(Ni)O_3$ and $Ce(Mn,Fe)O_2$ was used as the ceramic anode. The fabricated cathode-supported button cell showed a relatively low power density of $0.207Wcm^{-2}$ at $850^{\circ}C$; however, it is expected to show better performance through the optimization of the infiltration rate and thickness of LSCF-YSZ cathode-support layer.

다양한 혼합 전극을 사용한 Organic Light Emitting Diodes(OLEDs)의 전기적 특성 (Electrical Characteristics of Organic Light Emitting Diodes (OLED) using the cathode change)

  • 이현구;김준호;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.475-476
    • /
    • 2005
  • Efficient electron injection is essential to achieve bright and efficient organic light-emitting diodes (OLEDs). In spite of high work function of Al, it is a common cathode because of its stability. In this paper, to overcome the poor electron injection in OLEDs with Al cathode, OLEDs with various composite cathodes were fabricated and investigated using a conventional OLEDs structure of indium tin oxide ITO/NPB(40 nm)/$Alq_3$(50 nm)/Al. composite cathodes were composed of alkaline materials such as Ca and Li, Al deposition or codeposited with AI. We showed best performance at the device with composite cathode (LiF/Al).

  • PDF

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk;Park, Jinwoo;Kim, Byung-Kook;Han, Jeong Woo
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.331-337
    • /
    • 2015
  • $LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.

Nd2-xSrxNiO4+δ/GDC(x = 0, 0.4, 0.6) 공기극의 전기화학특성 평가 (Electrochemical Performance of a Nd2-xSrxNiO4+δ/GDC(x = 0, 0.4, 0.6) as a SOFC Cathode Material)

  • 이경진;서정욱;임예솔;황해진
    • 한국세라믹학회지
    • /
    • 제51권1호
    • /
    • pp.51-56
    • /
    • 2014
  • Mixed ionic and electronic conducting $K_2NiF_4$-type oxide, $Nd_{2-x}Sr_xNiO_{4+\delta}$ (x = 0, 0.4, 0.6) powders were synthesized by a solid-state reaction technique and solid oxide fuel cells consisting of a $Nd_{2-x}Sr_xNiO_{4+\delta}-GDC$ cathode, a Ni-YSZ anode and 8YSZ as an electrolyte were fabricated. The effect of strontium substitution for neodymium on the electrical and electrochemical properties was examined. The electrical conductivity increased with an increase in the Sr doping content, while it appears that the excess oxygen (${\delta}$) decreased. Sr doping into $Nd_2NiO_{4+\delta}$ resulted in an increase in the cathode polarization resistance and an decrease in the power density of the cell. These phenomena may be associated with the decreased amount of excess oxygen noted in the $Nd_{2-x}Sr_xNiO_{4+\delta}$ cathode.

Thickness Effect of ZnO Electron Transport Layers in Inverted Organic Solar Cells

  • Jang, Woong-Joo;Cho, Hyung-Koun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.377-377
    • /
    • 2011
  • Organic solar cells (OSCs) with low cost have been studied to apply on flexible substrate by solution process in low temperature [1]. In previous researches, conventional organic solar cell was composed of metal oxide anode, buffer layer such as PEDOT:PSS, photoactive layer, and metal cathode with low work function. In this structure, indium tin oxide (ITO) and Al was generally used as metal oxide anode and metal cathode, respectively. However, they showed poor reliability, because PEDOT:PSS was sensitive to moisture and air, and the low work function metal cathode was easily oxidized to air, resulting in decreased efficiency in half per day [2]. Inverted organic solar cells (IOSCs) using high work function metal and buffer layer replacing the PEDOT:PSS have focused as a solution in conventional organic solar cell. On the contrary to conventional OSCs, ZnO and TiO2 are required to be used as a buffer layer, since the ITO in IOSC is used as cathode to collect electrons and block holes. The ZnO is expected to be excellent electron transport layer (ETL), because the ZnO has the advantages of high electron mobility, stability in air, easy fabrication at room temperature, and UV absorption. In this study, the IOSCs based on poly [N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) : [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) were fabricated with the ZnO electron-transport layer and MoO3 hole-transport layer. Thickness of the ZnO for electron-transport layer was controlled by rotation speed in spin-coating. The PCDTBT and PC70BM were mixed with a ratio of 1:2 as an active layer. As a result, the highest efficiency of 2.53% was achieved.

  • PDF

아연-이온 배터리의 에너지 저장 성능 향상을 위한 망간산화물이 코팅된 흑연시트의 제조 (Synthesis of Manganese Oxide Coated Graphite Sheet for Zinc-Ion Batteries with Improved Energy Storage Performance)

  • 이영근;안건형
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.68-74
    • /
    • 2021
  • Zinc-ion Batteris (ZIBs) are recently being considered as energy storage devices due to their high specific capacity and high safety, and the abundance of zinc sources. Especially, ZIBs can overcome the drawbacks of conventional lithium ion batteris (LIBs), such as cost and safety issues. However, in spite of their advantages, the cathode materials under development are required to improve performance of ZIBs, because the capacity and cycling stability of ZIBs are mainly influenced by the cathode materials. To design optimized cathode materials for high performance ZIBs, a novel manganese oxide (MnO2) coated graphite sheet is suggested herein with improved zinc-ion diffusion capability thanks to the uniformly decorated MnO2 on the graphite sheet surface. Especially, to optimize MnO2 on the graphite sheet surface, amounts of percursors are regulated. The optimized MnO2 coated graphite sheet shows a superior zinc-ion diffusion ability and good electrochemical performance, including high specific capacity of 330.8 mAh g-1 at current density of 0.1 A g-1, high-rate performance with 109.4 mAh g-1 at a current density of 2.0 A g-1, and remarkable cycling stability (82.2 % after 200 cycles at a current density of 1.0 A g-1). The excellent electrochemical performance is due to the uniformly decorated MnO2 on the graphite sheet surface, which leads to excellent zinc-ion diffusion ability. Thus, our study can provide a promising strategy for high performance next-generation ZIBs in the near future.

고체산화물 연료전지용 $YSZ/La_0.85S_r0.15MnO_3$계 복합전극의 개발 (Development of $YSZ/La_0.85S_r0.15MnO_3$ Composite Electrodes for Solid Oxide Fuel Cells)

  • 윤성필;현상훈;김승구;남석우;홍성안
    • 한국세라믹학회지
    • /
    • 제36권9호
    • /
    • pp.982-990
    • /
    • 1999
  • YSZ/LSM composite cathode was fabricated by dip-coating of YSZ sol on the internal pore surface of a LSM cathode followed by sintering at low temperature (800-100$0^{\circ}C$) The YSZ coating significantly increased the TPB(Triple Phase Boundary) where the gas the electrode and the electrolyte were in contact with each other. Sinter the formation of resistive materials such as La2Zr2O7 or SrZrO3 was prevented due to the low processing temperature and TPB was increased due to the YSZ film coating the electrode resistance (Rel) was reduced about 100 times compared to non-modified cathode. From the analysis of a.c impedance it was shown that microstructural change of the cathode caused by YSZ film coating affected the oxygen reduction reaction. In the case of non-modified cathode the RDS (rate determining step) was electrode reactions rather than mass transfer or the oxygen gas diffusion in the experimental conditions employed in this study ($600^{\circ}C$-100$0^{\circ}C$ and 0,01-1 atm of Po2) for the YSZ film coated cathode however the RDS involved the oxygen diffusion through micropores of YSZ film at high temperature of 950-100$0^{\circ}C$ and low oxygen partial pressure of 0.01-0.03 atm.

  • PDF

혼합 이온 및 전자 전도체-프로톤 전도성 전해질 복합 공기극을 적용한 프로토닉 세라믹 연료전지의 전기화학적 성능 평가 (Electrochemical Evaluation of Mixed Ionic and Electronic Conductor-Proton Conducting Oxide Composite Cathode for Protonic Ceramic Fuel Cells)

  • 신형식;이진우;최시혁
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.48-55
    • /
    • 2024
  • The electrochemically active site of mixed ionic and electronic conductor (MIEC) as a cathode material is restricted to the triple phase boundary in protonic ceramic fuel cells (PCFCs) due to the insufficient of proton-conducting properties of MIEC. This study primarily focused on expanding the electrochemically active site by La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF6428)-BaZr0.4Ce0.4Y0.1Yb0.1O3-δ (BZCYYb4411) composite cathode. The electrochemical properties of the composite cathode were evaluated using anode-supported PCFC single cells. In comparison to the LSCF6428 cathode, the peak power density of the LSCF6428-BZCYYb4411 composite cathode is much enhanced by the reduction in both ohmic and non-ohmic resistance, possibly due to the increased electrochemically active site.

가변 극성 알루미늄 아크 용접의 이론적 배경 고찰 (Theoretical background discussion on variable polarity arc welding of aluminum)

  • 조정호;이중재;배승환;이용기;박경배;김용준;이준경
    • Journal of Welding and Joining
    • /
    • 제33권2호
    • /
    • pp.14-17
    • /
    • 2015
  • Cleaning effect is well known mechanism of oxide layer removal in DCEP polarity. It is also known that DCEN has higher heat input efficiency than DCEP in GTAW process. Based on these two renowned arc theories, conventional variable polarity arc for aluminum welding was set up to have minimum DCEP and maximum DCEN duty ratio to achieve the highest heat input efficiency and weldability increase. However, recent several variable polarity GTA research papers reported unexpected result of proportional relationship between DCEP duty ratio and heat input. The authors also observed the same result then suggested combination of tunneling effect and random walk of cathode spot to fill up the gap between experiment and conventional arc theory. In this research, suggested combinational work of tunneling effect and rapid cathode spot changing is applied to another unexpected phenomena of variable polarity aluminum arc welding. From previous research, it is reported that wider oxide removal range, narrower bead width and shallower penetration depth are observed in thin oxide layered aluminum compared to the case of thick oxide. This result was reported for the first time and it was hard to explain the reason at that time therefore the inference by the authors was hardly acceptable. However, the suggested combinational theory successfully explains the result of the previous report in logical way.

Proposed Guidelines for Selection of Methods for Erosion-corrosion testing in Flowing Liquids

  • Matsumura, Masanobu
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.291-296
    • /
    • 2007
  • The corrosion of metals and alloys in flowing liquids can be classified into uniform corrosion and localized corrosion which may be categorized as follows. (1) Localized corrosion of the erosion-corrosion type: the protective oxide layer is assumed to be removed from the metal surface by shear stress or turbulence of the fluid flow. A macro-cell may be defined as a situation in which the bare surface is the macro-anode and the other surface covered with the oxide layer is the macro-cathode. (2) Localized corrosion of the differential flow-velocity corrosion type: at a location of lower fluid velocity, a thin and coarse oxide layer with poor protective qualities may be produced because of an insufficient supply of oxygen. A macro-cell may be defined as a situation in which this surface is the macro-anode and the other surface covered with a dense and stable oxide layer is the macro-cathode. (3) Localized corrosion of the active/passive-cell type: on a metal surface a macro-cell may be defined as a situation in which a part of it is in a passivation state and another in an active dissolution state. This situation may arise from differences in temperature as well as in the supply of the dissolved oxygen. Compared to uniform corrosion, localized corrosion tends to involve a higher wall thinning rate (corrosion rate) due to the macro-cell current as well as to the ratio of the surface area of the macro-anode to that of the macro-cathode, which may be rationalized using potential vs. current density diagrams. The three types of localized corrosion described above can be reproduced in a Jet-in-slit test by changing the flow direction of the test liquid and arranging environmental conditions in an appropriate manner.