• Title/Summary/Keyword: oxide cathode

Search Result 436, Processing Time 0.028 seconds

Applications to Thin Film Processing to Solid Oxide Fuel Cells

  • Kim, Eui-Hyun;Hwang, Hee-Su;Ko, Myeong-Hee;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.696-696
    • /
    • 2013
  • Solid Oxide Fuel Cells (SOFCs) have been gaining academic/industrial attention due to the unique high efficiency and minimized pollution emission. SOFCs are an electrochemical system composed of dissimilar materials which operates at relatively high temperatures ranging from 800 to 1000oC. The cell performance is critically dependent on the inherent properties and integration processing of the constituents, a cathode, an electrolyte, an anode, and an interconnect in addition to the sealing materials. In particular, the gas transport, ion transport, and by-product removal also affect the cell performance, in terms of open cell voltages, and cell powers. In particular, the polarization of cathode materials is one of the main sources which affects the overall function in SOFCs. Up to now, there have been studies on the materials design and microstructure design of the component materials. The current work reports the effect of thin film processing on cathode polarization in solid oxide fuel cells. The polarization issues are discussed in terms of dc- and ac-based electrical characterizations. The potential of thin film processing to the applicability to SOFCs is discussed.

  • PDF

Ce0.8Sm0.2O2 Sol-gel Modification on La0.8Sr0.2Mn0.8Cu0.2O3 Cathode for Intermediate Temperature Solid Oxide Fuel Cell

  • Lee, Seung Jin;Kang, Choon-Hyoung;Chung, Chang-Bock;Yun, Jeong Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.77-82
    • /
    • 2015
  • To increase the performance of solid oxide fuel cell operating at intermediate temperature ($600^{\circ}C{\sim}800^{\circ}C$), $Sm_{0.2}Ce_{0.8}O_2$ (SDC) thin layer was applied to the $La_{0.8}Sr_{0.2}Mn_{0.8}Cu_{0.2}O_3$ (LSMCu) cathode by sol-gel coating method. The SDC was employed as a diffusion barrier layer on the yttria-stabilized zirconia(YSZ) to prevent the interlayer by-product formation of $SrZrO_3$ or $La_2Zr_2O_7$. The by-products were hardly formed at the electrolyte-cathode interlayer resulting to reduce the cathode polarization resistance. Moreover, SDC thin film was coated on the cathode pore wall surface to extend the triple phase boundary (TPB) area.

Characterization of PSCF3737 for intermediate temperature solid oxide fuel cell (IT-SOFC) (중.저온형 고체 산화물 연료전지의 공기극으로 사용되는 PSCF3737 물질의 특성에 관한 연구)

  • Park, Kwang-Jin;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.61-64
    • /
    • 2008
  • $Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_{3-\delta}$ (PSCF3737) was prepared and characterized as a cathode material for intermediate temperature-operating solid oxide fuel cell (IT-SOFC). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), and electrical property measurement were carried out to study cathode performance of the material. XPS and EXAFS results proved that oxygen vacancy concentration was decreased and lattice constants of the perovskite structure material were increased by doping Fe up to 70 mol% at B-site of the crystal structure, which also extended the distance between oxygen and neighbor atoms. Thermal expansion coefficient (TEC) of PSCF3737 is smaller than that of $Pr_{0.3}Sr_{0.7}CoO_{3-\delta}$(PSC37) due to lower oxygen vacancy concentration. PSCF3737 showed better cathode performance than PSC37. It might be due good adhesion by a smaller difference of TEC between $Gd_{0.1}Ce_{0.9}O_2$ (CGO91) and electrode. Composite material PSCF3737-CGO91 showed better compatibility of TEC than PSCF3737. However, PSCF3737-CGO91 did not represent higher electrochemical property than PSCF3737 due to decreased reaction sites by CGO91.

  • PDF

Review of interface engineering for high-performance all-solid-state batteries (계면 제어를 기반으로 한 고성능 전고체 전지 연구)

  • Insu, Hwang;Hyeon Jeong, Lee
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • This review will discuss the effort to understand the interfacial reactions at the anode and cathode sides of all-solid-state batteries. Antiperovskite solid electrolytes have received increasing attention due to their low melting points and anion tunability which allow controlling microstructure and crystallographic structures of this material system. Antiperovskite solid electrolytes pave the way for the understanding relationship between critical current density and mechanical properties of solid electrolytes. Microstructure engineering of cathode materials has been introduced to mitigate the volume change of cathode materials in solid-state batteries. The hollow microstructure coupled with a robust outer oxide layer effectively mitigates both volume change and stress level of cathode materials induced by lithium insertion and extraction, thus improving the structural stability of the cathode and outer oxide layer, which results in stable cycling performance of all-solid-state batteries.

Electrochemical Performance of the Solid Oxide Fuel Cell with Different Thicknesses of BSCF-based Cathode (BSCF계 혼합전도성 공기극의 두께에 따른 고체산화물 연료전지의 전기화학적 특성)

  • Jeong, Jaewon;Yoo, Chung-Yul;Joo, Jong Hoon;Yu, Ji Haeng
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.186-192
    • /
    • 2013
  • In order to reduce the costs and to improve the durability of solid oxide fuel cell (SOFC), the operating temperature should be decreased while the power density is maintained as much as possible. However, lowering the operating temperature increases the cathode interfacial polarization resistances dramatically, limiting the performance of low-temperature SOFC at especially purely electronic conducting cathode. To improve cathode performance at low temperature, the number of reaction sites for the oxygen reduction should be increased by using a mixed ionic and electronic conducting (MIEC) material. In this study, anode-supported fuel cells with two different thicknesses of the MIEC cathode were fabricated and tested at various operating temperatures. The anode supported cell with $32.5{\mu}m$-thick BSCFZn-LSCF cathode layer showed much lower polarization resistance than that with $3.2{\mu}m$ thick cahtode and higher power density especially at low temperature. The effects of cathode layer thickness on the electrochemical performance are discussed with analysis of impedance spectra.

Synergy Effect of K Doping and Nb Oxide Coating on Li1.2Ni0.13Co0.13Mn0.54O2 Cathodes

  • Kim, Hyung Gi;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • The Li-rich oxides are promising cathode materials due to their high energy density. However, characteristics such as low rate capability, unstable cyclic performance, and rapid capacity fading during cycling prevent their commercialization. These characteristics are mainly attributed to the phase instability of the host structure and undesirable side reactions at the cathode/electrolyte interface. To suppress the phase transition during cycling and interfacial side reactions with the reactive electrolyte, K (potassium) doping and Nb oxide coating were simultaneously introduced to a Li-rich oxide (Li1.2Ni0.13Co0.13Mn0.54O2). The capacity and rate capability of the Li-rich oxide were significantly enhanced by K doping. Considering the X-ray diffraction (XRD) analysis, the interslab thickness of LiO2 increased and cation mixing decreased due to K doping, which facilitated Li migration during cycling and resulted in enhanced capacity and rate capability. The K-doped Li-rich oxide also exhibited considerably improved cyclic performance, probably because the large K+ ions disturb the migration of the transition metals causing the phase transition and act as a pillar stabilizing the host structure during cycling. The Nb oxide coating also considerably enhanced the capacity and rate capability of the samples, indicating that the undesirable interfacial layer formed from the side reaction was a major resistance factor that reduced the capacity of the cathode. This result confirms that the introduction of K doping and Nb oxide coating is an effective approach to enhance the electrochemical performance of Li-rich oxides.

Stabilizing Li2O-based Cathode/Electrolyte Interfaces through Succinonitrile Addition

  • Myeong Jun Joo;Yong Joon Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.231-242
    • /
    • 2023
  • Li2O-based cathodes utilizing oxide-peroxide conversion are innovative next-generation cathodes that have the potential to surpass the capacity of current commercial cathodes. However, these cathodes are exposed to severe cathode-electrolyte side reactions owing to the formation of highly reactive superoxides (Ox-, 1 ≤ x < 2) from O2- ions in the Li2O structure during charging. Succinonitrile (SN) has been used as a stabilizer at the cathode/electrolyte interface to mitigate cathode-electrolyte side reactions. SN forms a protective layer through decomposition during cycling, potentially reducing unwanted side reactions at the interface. In this study, a composite of Li2O and Ni-embedded reduced graphene oxide (LNGO) was used as the Li2O-based cathode. The addition of SN effectively thinned the interfacial layer formed during cycling. The presence of a N-derived layer resulting from the decomposition of SN was observed after cycling, potentially suppressing the formation of undesirable reaction products and the growth of the interfacial layer. The cell with the SN additive exhibited an enhanced electrochemical performance, including increased usable capacity and improved cyclic performance. The results confirm that incorporating the SN additive effectively stabilizes the cathode-electrolyte interface in Li2O-based cathodes.

Performance of Solid Oxide Fuel Cell with Gradient-structured Thin-film Cathode Composed of Pulsed-laser-deposited Lanthanum Strontium Manganite-Yttria-stabilized Zirconia Composite (PLD 공정으로 제조된 LSM-YSZ 나노복합체층이 포함된 경사구조 박막 공기극을 적용한 SOFC의 성능 분석)

  • Myung, Doo-Hwan;Hong, Jong-Ill;Hwang, Jae-Yeon;Lee, Jong-Ho;Lee, Hae-Weon;Kim, Byung-Kook;Cho, Sung-Gurl;Son, Ji-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.487-492
    • /
    • 2011
  • The effect of the application of lanthanum strontrium manganite and yttria-stabilized zirconia (LSM-YSZ) nano-composite fabricated by pulsed laser deposition (PLD) as a cathode of solid oxide fuel cell (SOFC) is studied. A gradient-structure thin-film cathode composed of 1 micron-thick LSM-YSZ deposited at an ambient pressure ($P_{amb}$) of 200 mTorr; 2 micron-thick LSM-YSZ deposited at a $P_{amb}$ of 300 mTorr; and 2 micron-thick lanthanum strontium cobaltite (LSC) current collecting layer was fabricated on an anode-supported SOFC with an ~8 micron-thick YSZ electrolyte. In comparison with a 1 micron-thick nano-structure single-phase LSM cathode fabricated by PLD, it was obviously effective to increase triple phase boundaries (TPB) over the whole thickness of the cathode layer by employing the composite and increasing the physical thickness of the cathode. Both polarization and ohmic resistances of the cell were significantly reduced and the power output of the cell was improved by a factor of 1.6.

Development of Tubular Solid Oxide Fuel Cell (원통형 고체산화물 연료전지 기술개발)

  • Song, Rak-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.373-380
    • /
    • 2001
  • Solid Oxide Fuel Cells (SOFCs) have received considerable attention because of the advantages of high effiiciency, low pollution, cogeneration application and excellent integration with simplified reformer In this paper, we reported development of anode-tubular SOFC by wet process. For making tubular cell, Ni-cermet YSZ anode tube was fabricated using extrusion process, and YSZ electrolyte layer and LSM-YSZ composite, LSM, LSCF cathode layer were coated onto the anode supported tube using slurry dipping process and sintered by co-firing process. By using this tubular cell, we fabricated single cell consisted of the various cathode layers and 4 cell stack with an effective area of $75 cm^2$ per single cell, and evaluated their performance characteristics.

  • PDF

High Electrochemical Activity of Bi2O3-based Composite SOFC Cathodes

  • Jung, Woo Chul;Chang, Yun-Jie;Fung, Kuan-Zong;Haile, Sossina
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.278-282
    • /
    • 2014
  • Due to high ionic conductivity and favorable oxygen electrocatalysis, doped $Bi_2O_3$ systems are promising candidates as solid oxide fuel cell cathode materials. Recently, several researchers reported reasonably low cathode polarization resistance by adding electronically conducting materials such as (La,Sr)$MnO_3$ (LSM) or Ag to doped $Bi_2O_3$ compositions. Despite extensive research efforts toward maximizing cathode performance, however, the inherent catalytic activity and electrochemical reaction pathways of these promising materials remain largely unknown. Here, we prepare a symmetrical structure with identically sized $Y_{0.5}Bi_{1.5}O_3$/LSM composite electrodes on both sides of a YSZ electrolyte substrate. AC impedance spectroscopy (ACIS) measurements of electrochemical cells with varied cathode compositions reveal the important role of bismuth oxide phase for oxygen electrocatalysis. These observations aid in directing future research into the reaction pathways and the site-specific electrocatalytic activity as well as giving improved guidance for optimizing SOFC cathode structures with doped $Bi_2O_3$ compositions.