• Title/Summary/Keyword: oxide cathode

Search Result 436, Processing Time 0.023 seconds

The Crack Behavior in the Planar Solid Oxide Fuel Cell under the Fabricating and Operating Temperature (제조 및 작동온도에서 평판형 고체연료전지에 발생한 균열 거동)

  • Park, Cheol Jun;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.34-41
    • /
    • 2014
  • The goal of this study is to investigate some crack behaviors which affect the crack propagation angle at the planar solid oxide fuel cell with cracks under the fabricating and operating temperature and analyze the stresses by 3 steps processing on the solid oxide fuel cell. Currently, there are lots of researches of the performance improvement for fuel cells, and also for the more powerful efficiency. However, the planar solid oxide fuel cell has demerits which the electrode materials have much brittle properties and the thermal condition during the operating process. It brings some problems which have lower reliability owing to the deformation and cracks from the thermal expansion differences between the electrolyte, cathode and anode electrodes. Especially the crack in the corner of the electrodes gives rise to the fracture and deterioration of the fuel cells. Thus it is important to evaluate the behavior of the cracks in the solid oxide fuel cell for the performance and safety operation. From the results, we showed the stress distributions from the cathode to the anode and the effects of the edge crack in the electrolyte and the slant crack in the anode. Futhermore the crack propagation angle was expected according to the crack length and slant angle and the variation of the stress intensity factors for the each fracture mode was shown.

Fabrication and Characteristics of Anode-supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 제조 및 특성)

  • Song, Keun-Sik;Song, Rak-Hyun;Ihm, Young-Eon
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.691-695
    • /
    • 2002
  • A low temperature anode-supported tubular solid oxide fuel cell was developed. The anode-supported tube was fabricated using extrusion process. Then the electrolyte layer and the cathode layer were coated onto the anode tube by slurry dipping process, subsequently. The anode tube and electrolyte were co-fired at $140^{\circ}C$, and the cathode was sintered at $1200^{\circ}C$. The thickness and gas permeability of the electrolyte depended on the number of coating and the slurry concentration. Anode-supported tube was satisfied with SOFC requirements, related to electrical conductivity, pore structure, and gas diffusion limitations. At operating temperature of $800^{\circ}C$, open circuit voltage of the cell with gastight and dense electrolyte layer was 1.1 V and the cell showed a good performance of 450 mW/$\textrm{cm}^2$.

A Review of Ac-impedance Models for the Analysis of the Oxygen Reduction Reaction on the Porous Cathode Electrode for Solid Oxide Fuel Cell

  • Kim, Ju-Sik;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.106-114
    • /
    • 2005
  • This article covers the theoretical ac-impedance models for the analysis of oxygen reduction on the porous cathode electrode f3r solid oxide fuel cell (SOFC). Firstly, ac-impedance models were explained on the basis of the mechanism of oxygen reduction, which were classified into the rate-determining steps; (i) adsorption of oxygen atom on the electrode surface, (ii) diffusion of adsorbed oxygen atom along the electrode surface towards the three-phase (electrode/electrolyte/gas) boundaries, (iii) surface diffusion of adsorbed oxygen atom m ixed with the adsorption reaction of oxygen atom on the electrode surface and (iv) diffusion of oxygen vacancy through the electrode coupled with the charge transfer reaction at the electrode/gas interface. In each section for ac-impedance model, the representative impedance plots and the interpretation of important parameters attributed to the oxygen reduction reaction were explained. Finally, we discussed in detail the applications of the proposed theoretical ac-impedance models to the real electrode of SOFC system.

Rapid thermal annealing effect of IZO transparent conducting oxide films grown by a box cathode sputtering (박스캐소드 스퍼터로 성장시킨 IZO 투명 전도막의 급속 열처리 효과)

  • Bae, Jung-Hyeok;Moon, Jong-Min;Jeong, Soon-Wook;Kim, Han-Ki;Yi, Min-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.473-474
    • /
    • 2006
  • We report on the rapid thermal annealing effect on the electrical, optical, and structural properties of IZO transparent conducting oxide films grown by box cathode sputtering (BCS). To investigate structural properties of rapid thermal annealed IZO films in $N_2$ atmosphere as a function of annealing temperature, syncrotron x-ray scattering experiment was carried out. It was shown that the amorphous structure of the IZO films was maintained until $400^{\circ}C$ because ZnO and $In_2O_3$ are immiscible and must undergo phase separation to allow crystallization. In addition, the IZO films grown at different Ar/$O_2$ ratio of 30/1.5 and 30/0 showed different preferred (222) and (440) orientation, respectively, with increase of rapid thermal annealing temperature. The electrical properties of the OLED with rapid thermal annealed IZO anode was degraded as rapid thermal annealing temperature of IZO increased. This indicates the amorphous IZO anode is more beneficial to make high-quality OLEDs.

  • PDF

Aging Mechanisms of Lithium-ion Batteries

  • Jangwhan Seok;Wontae Lee;Hyunbeom Lee;Sangbin Park;Chanyou Chung;Sunhyun Hwang;Won-Sub Yoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.51-66
    • /
    • 2024
  • Modern society is making numerous efforts to reduce reliance on carbon-based energy systems. A notable solution in this transition is the adoption of lithium-ion batteries (LIBs) as potent energy sources, owing to their high energy and power densities. Driven by growing environmental challenges, the application scope of LIBs has expanded from their initial prevalence in portable electronic devices to include electric vehicles (EVs) and energy storage systems (ESSs). Accordingly, LIBs must exhibit long-lasting cyclability and high energy storage capacities to facilitate prolonged device usage, thereby offering a potential alternative to conventional sources like fossil fuels. Enhancing the durability of LIBs hinges on a comprehensive understanding of the reasons behind their performance decline. Therefore, comprehending the degradation mechanism, which includes detrimental chemical and mechanical phenomena in the components of LIBs, is an essential step in resolving cycle life issues. The LIB systems presently being commercialized and developed predominantly employ graphite anode and layered oxide cathode materials. A significant portion of the degradation process in LIB systems takes place during the electrochemical reactions involving these electrodes. In this review, we explore and organize the aging mechanisms of LIBs, especially those with graphite anodes and layered oxide cathodes.

Comparison of Electrical Conductivities in Complex Perovskites and Layered Perovskite for Cathode Materials of Intermediate Temperature-operating Solid Oxide Fuel Cell (중·저온형 고체산화물 연료전지 공기극 물질로 사용되는 이중층 페로브스카이트와 컴플렉스 페로브스카이트의 전기 전도도 비교)

  • Kim, Jung Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.295-299
    • /
    • 2014
  • Electrical conductivities of complex perovskites, layered perovskite and Sr doped layered perovskite oxides were measured and analyzed for cathode materials of Intermediate Temperature-operating Solid Oxide Fuel Cells (IT-SOFCs). The electrical conductivities of $Sm_{1-x}Sr_xCoO_{3-\delta}$ (x = 0.3 and 0.7) exhibit a metal-insulator transition (MIT) behavior as a function of temperature. However, $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ (SSC55) shows metallic conductivity characteristics and the maximum electrical conductivity value compared to the values of $Pr_{0.5}Sr_{0.5}CoO_{3-\delta}$ (PSC55) and $Nd_{0.5}Sr_{0.5}CoO_{3-\delta}$ (NSC55). The electrical conductivity of $SmBaCo_2O_{5+\delta}$ (SBCO) exhibits a MIT at about $250^{\circ}C$. The maximum conductivity is 570 S/cm at $200^{\circ}C$ and its value is higher than 170 S/cm over the whole temperature range tested. $SmBa_{0.5}Sr_{0.5}Co_2O_{5+\delta}$ (SBSCO), 0.5 mol% Sr and Ba substituted at the layered perovskite shows a typically metallic conductivity that is very similar to the behavior of the SSC55 cathode, and the maximum and minimum electrical conductivity in the SBSCO are 1280 S/cm at $50^{\circ}C$ and 280 S/cm at $900^{\circ}C$.

Electro-optical properties of organic EL device (유기 EL 소자의 전기-광학적 특성)

  • Kim, Min-Soo;Park, Lee-Soon;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.252-257
    • /
    • 1997
  • Organic EL devices, which have the sing3e-layer structure of ITO(indium-tin-oxide) /PPV(poly(p-phenylene vinylene))/cathode and the double-layer structure of ITO/PVK (poly(N- vinylcarbazole)) /PPV/cathode, were fabricated and their electro-optical properties were investigated. Experimental results, in single-layer structure, shown that the increment of temperature for thermal conversion of PPV film from $140^{\circ}C$ to $260^{\circ}C$ decreases the maximum luminance from $118.8\;cd/m^{2}$(20V) to $21.14\;cd/m^{2}$(28V) and shift the maximum peak of EL spectrum from 500nm to 580nm. The lower the work function of cathode is, the more the luminance and injection current of device. In double-layer structure, as the concentration of PVK solution decreases from 0.5 wt% to 0.05 wt%, the luminance of device increases from $70.71\;cd/m^{2}$(32V) to $152.7\;cd/m^{2}$(26V).

  • PDF

A Study on Sintering Inhibition of La0.8Sr0.2MnO3- Cathode Material for Cathode-Supported Fuel Cells

  • Ahmed, Bilal;Lee, Seung-Bok;Song, Rak-Hyun;Lee, Jong-Won;Lim, Tak-Hyoung;Park, Seok-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.494-499
    • /
    • 2016
  • In this work, the effects of different sintering inhibitors added to $La_{0.8}Sr_{0.2}MnO_{3-{\partial}}$ (LSM) were studied to obtain an optimum cathode material for cathode-supported type of Solid oxide fuel cell (SOFC) in terms of phase stability, mechanical strength, electric conductivity and porosity. Four different sintering inhibitors of $Al_2O_3$, $CeO_2$, NiO and gadolinium doped ceria (GDC) were mixed with LSM powder, sintered at $1300^{\circ}C$ and then they were evaluated. The phase stability, sintering behavior, electrical conductivity, mechanical strength and microstructure were evaluated in order to assess the performance of the mixture powder as cathode support material. It has been found that the addition of $Al_2O_3$ undesirably decreased the electrical conductivity of LSM; other sintering inhibitors, however, showed sufficient levels of electrical conductivity. GDC and NiO addition showed a promising increase in mechanical strength of the LSM material, which is one of the basic requirements in cathode-supported designs of fuel cells. However, NiO showed a high reactivity with LSM during high temperature ($1300^{\circ}C$) sintering. So, this study concluded that GDC is a potential candidate for use as a sintering inhibitor for high temperature sintering of cathode materials.

Preparation of rGO-S-CPEs Composite Cathode and Electrochemical Performance of All-Solid-State Lithium-Sulfur Battery

  • Chen, Fei;Zhang, Gang;Zhang, Yiluo;Cao, Shiyu;Li, Jun
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.362-368
    • /
    • 2022
  • The application of polymer composite electrolyte in all-solid-state lithium-sulfur battery (ASSLSBs) can guarantee high energy density and improve the interface contact between electrolyte and electrode, which has a broader application prospect. However, the inherent insulation of the sulfur-cathode leads to a low electron/ion transfer rate. Carbon materials with high electronic conductivity and electrolyte materials with high ionic conductivity are usually selected to improve the electron/ion conduction of the composite cathode. In this work, PEO-LiTFSI-LLZO composite polymer electrolyte (CPE) with high ionic conductivity was prepared. The ionic conductivity was 1.16×10-4 and 7.26×10-4 S cm-1 at 20 and 60℃, respectively. Meanwhile, the composite sulfur cathode was prepared with Sulfur, reduced graphene oxide and composite polymer electrolyte slurry (S-rGO-CPEs). In addition to improving the ion conductivity in the cathode, CPEs also replaces the role of binder. The influence of different contents of CPEs in the cathode material on the performance of the constructed battery was investigated. The results show that the electrochemical performance of the all-solid-state lithium-sulfur battery is the best when the content of the composite electrolyte in the cathode is 40%. Under the condition of 0.2C and 45℃, the charging and discharging capacity of the first cycle is 923 mAh g-1, and the retention capacity is 653 mAh g-1 after 50 cycles.

Effects of Sr Contents on Structural Change and Electrical Conductivity in Cu-doped LSM ($La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$)

  • Ryu, Ji-Seung;No, Tae-Min;Kim, Jin-Seong;Jeong, Cheol-Won;Lee, Hui-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • Strontium doped lanthanum manganite (LSM) with perovskite structure for SOFC cathode material shows high electrical conductivity and good chemical stability, whereas the electrical conductivity at intermediate temperature below $800^{\circ}C$ is not sufficient due to low oxygen ion conductivity. The approach to improve electrical conductivity is to make more oxygen vacancies by substituting alkaline earths (such as Ca, Sr and Ba) for La and/or a transition metal (such as Fe, Co and Cu) for Mn. Among various cathode materials, $LaSrMnCuO_3$ has recently been suggested as the potential cathode materials for solid oxide fuel cells (SOFCs). As for the Cu doping at the B-site, it has been reported that the valence change of Mn ions is occurred by substituting Cu ions and it leads to formation of oxygen vacancies. The electrical conductivity is also affected by doping element at the A-site and the co-doping effect between A-site and B-site should be described. In this study, the $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$ ($0{\leq}x{\leq}0.4$) systems were synthesized by a combined EDTA-citrate complexing process. The crystal structure, morphology, thermal expansion and electrical conductivity with different Sr contents were studied and their co-doping effects were also investigated.

  • PDF