• 제목/요약/키워드: oxidative DNA damage

검색결과 491건 처리시간 0.044초

당뇨환자에 있어서 녹용추출물의 섭취가 혈압, 혈당 및 임파구 DNA 손상에 미치는 영향 (Effect of Deer Antler Drink Supplementation on Blood Pressure, Blood Glucose and Lymphocyte DNA Damage in Type 2 Diabetic Patients)

  • 김혜영;전은재;박유경;강명희
    • Journal of Nutrition and Health
    • /
    • 제37권9호
    • /
    • pp.794-800
    • /
    • 2004
  • Deer Antler has been known for its traditional oriental medicinal properties and has been widely used to promote growth, boost immune function, treat blood loss and chronic joint pain. Recent study showed imported (New Zealand) Deer Antler was beneficial in reducing the side effects of cancer treatments. However, there was no intervention study conducted on the effect of Korean Deer Antler on reducing the oxidative stress to patients with diabetes. One of the sensitive ways to measure endogenous oxidative stress is by measuring cellular DNA damage using single cell gel electrophoresis (COMET assay). This study was conducted to investigate the possible beneficial effect of commercial Deer Antler drink (provided by Chung-yang Deer Farm) on lymphocyte DNA damage and blood glucose of diabetic patients. Ten patients (4 men, 6 women) participated in the study and consumed 2 pouches of Deer Antler drink every day for 20 days. Blood was collected on the morning before and after the intervention for lymphocyte isolation and blood glucose analysis. Both systolic and diastolic blood pressure showed a tendency to decrease but did not reach statistical significance after the trial. Blood glucose level was not affected by the supplementation. After the intervention, over 50% reduction were noted in the cellular DNA damage, expressed as tail length (TL) and tail moment (TM: tail length ${\times}$ percent tail DNA) . Although we did not obtain beneficial effect on lowering blood glucose levels in the patients, this results suggest that Deer Antler may initially act in protecting endogenous DNA damage in short-term experiment.

운동으로 유발된 산화 스트레스와 마늘의 항산화 작용 (Antioxidant Effect of Garlic Supplement against Exercise-Induced Oxidative Stress in Rats)

  • 윤군애
    • Journal of Nutrition and Health
    • /
    • 제40권8호
    • /
    • pp.701-707
    • /
    • 2007
  • This study was to investigate lipid peroxidation, antioxidant enzyme activity and DNA damage after exercise, and the protective effect of garlic against exercise-induced oxidative stress. Male Sprague-Dawley rats(4 weeks old) were randomly divided into three groups of 6 rats each; control group(Con) without garlic and exercise, Ex group with exercise alone, and Ex-G group with 2% garlic and exercise. For 4 weeks, rats were given diets containing 15% corn oil and 1% cholesterol with or without garlic. The swimming was selected as a model for exercise performance. Rats swam for 40 min a day, for 5 days a week. Group Ex and Ex-G showed significant lowering in body weight gain and fat accumulation compared to control. No significant changes were observed in levels of plasma cholesterol and triglyceride among three groups, demonstrating that exercise and garlic had no effects on changes of blood lipid. This finding of blood lipid seems to be due to higher plant sterol content in corn oil. The DNA tail moment of lymphocytes showed greater tendency in Ex and Ex-G than in control, but garlic supplements failed to suppress DNA damages. Compared to control, Ex had higher plasma TBARS which was lowered to the control's level in Ex-G with 2% garlic supplementation(p<0.05). Ex-G led to a higher hepatic superoxide dismutase(SOD) activity than control and Ex(p<0.05). Activity of hepatic catalase was also increased in Ex-G, while in Ex it was significantly low(p<0.05). It seemed that TBARS levels were related to the activities of SOD and catalase, and that garlic contributed to increasing the enzyme activities and led to decrease of TBARS. These results demonstrate that lipid peroxidation and DNA damage occur as a consequences of oxidative stress after exercise, and that antioxidant defense against oxidative stress could be enhanced by garlic supplementation through the induction of antioxidant enzymes. However, further investigations should be done on the garlic effect on DNA damage.

디젤분진이 체세포에서의 DNA 손상에 미치는 영향 (Genotoxic Effects of Diesel Exhaust Particle Extract in NIH/3T3 Cells)

  • 허찬;김남이;정규혁;문창규;허문영
    • Environmental Analysis Health and Toxicology
    • /
    • 제19권4호
    • /
    • pp.335-344
    • /
    • 2004
  • Diesel exhaust particle (<2.5 ${\mu}{\textrm}{m}$, DEP$_{2.5}$) is known to be probarbly carcinogenic (IARC group 2A). DEP$_{2.5}$ contains organic compounds such as polycyclicaromatic hydrocarbon (PAH), heterocyclic compounds, phenols, and nitroarenes. Reactive oxygen species (ROS) are generated by DEP$_{2.5}$ without any biological activation system. Therefore, an alternative mechanism by which DEP$_{2.5}$ could be carcinogenic is known by the generation of oxidative DNA damage. The aim of this study was to investigate genotoxic effects of DEP$_{2.5}$ using single cell gel electrophoresis. In order to evaluate the mechanisms of DEP$_{2.5}$ genotoxicity, the rat micro-some mediated and DNA repair enzyme treated comet assays together with routine comet assay were performed. DEP$_{2.5}$ was collected from diesel engine bus and dichloromethane extract was obtained. The organic extract of DEP$_{2.5}$ revealed DNA damage itself in NIH/3T3 cells. And it showed both oxidative and microsome mediated DNA damages. Vitamin C as an model antioxidant reduced DNA damage in endonuclase III treated comet assay. One of flavonoid, galangin as a CYP1A1 inhibitor reduced DNA damage in the presence of S-9 mixture. Our results show that DEP$_{2.5}$ are genotoxic and a great source of oxidative stress, but antioxidants can significantly reduce oxidative DNA damages. And DEP$_{2.5}$ may contain indirect mutagens which can be inhibited by CYP inhibitors.d by CYP inhibitors.

Glycation propagator에 의한 DNA damage 증가 (Increased DNA Damage Induced by Glycation Propagator)

  • 손태건;곽이섭;진영완
    • 생명과학회지
    • /
    • 제14권3호
    • /
    • pp.406-410
    • /
    • 2004
  • Glycation 반응은 glucose와 amino group 간에 일어나는 비효소적 축합 반응인 maillard 반응의 초기 반응으로 non enzymatic glycation 이라고도 한다. 생체내 glycation 반응을 통해 다수의 dicarbonyl화합물이 생성되고, 이들 dicarbonyl들 중에서 매우 반응성이 큰 것으로 확인된 glyoxal과 methylglyoxal과 catalase를 반응 시켜 glycation catalase의 활성 변화를 확인하였다. Non-glycated catalase에 비해 glycation catalase에서 구조적 인 modification과 degradation이 일어났으며, glycation반응 시간에 따라 활성이 크게 저하되는 것으로 확인 할 수 있었다. 특히 glycation 반응 시간 20일 경과 이후 glycation catalase 경우 활성이 거의 상실한 것으로 나타났다 Glyoxal과 methylglyoxal의 농도를 달리 해서 DNA와 반응 시켜 glycation propagator에 의한 직접적인 DNA damage를 확인 한 결과 Glyoxal과 methylglyoxal의 농도와 반응 시간에 따라 DNA mobility sit의 차이를 나타냈다. Fenton reaction 조건에 glyoxal과 methylglyoxal에 의해 활성이 저하된 catalase를 첨가 시켜 8-OH-dG의 생성을 확인한 결과 두 glycation propagator와의 반응 시간 의존적으로 8-OH-dG의 생성이 증가함을 보였다. 이상의 결과를 통해 glyoxal과 methylglyoxal의 antioxidant의 glycation은 oxidative stress의 증사를 유발해 생체내 활성 산소로부터 방어 기작에 심각한 문제를 야기하는 것으로 사료된다.

연자육 추출물의 항산화 및 산화적 DNA 손상억제 활성 (Antioxidant Activities and Inhibitory Effect on Oxidative DNA Damage of Nelumbinis Semen Extracts)

  • 박재호;이병구;변광인;김도완
    • 대한본초학회지
    • /
    • 제25권4호
    • /
    • pp.55-59
    • /
    • 2010
  • 본 연구에서는 연자육의 항산화 활성을 평가하기 위해 EtOAC 분획물과 열수 추출물을 이용하여 DPPH, Hydroxyl 라디칼 소거활성과 $Fe^{2+}$ 킬레이팅 활성을 측정하였다. 또한 산화적 DNA 손상억제 효과는 ${\phi}X$-174 RF I plasmid DNA cleavage assay를 통해 평가하였다. EtOAC 분획물은 $200{\mu}g/m{\ell}$에서 DPPH, Hydroxyl 라디칼 소거활성과 $Fe^{2+}$ 킬레이팅 활성이 각각 96.54%, 55.27%, 66.17%의 활성이 나타났으며, 열추 추출물에서는 각각 21.25%, 15.72%, 30.52%로 열수 추출물에 비해 EtOAC 분획물의 항산화 활성이 높은 것으로 나타났다. 또한 ${\phi}X$-174 RF I plasmid DNA cleavage assay에서 EtOAC 추출물은 $200{\mu}g/m{\ell}$에서 76%의 높은 억제 효과가 나타난 반면, 열수 추출물은 6%의 낮은 DNA 산화적 손상억제 효과를 나타내었다. 각 추출물의 총 페놀 함량을 조사한 결과 열수 추출물에 비해 EtOAC 분획물이 높은 것으로 나타났다. 항산화 활성과 DNA 산화적 손상억제 효과가 높은 EtOAC 분획물을 GC/MS에 의해 분석한 결과, Benzeneethanol, 3-methyl-Benzoic acid, 4-ethyl-Phenol, 2,4-bis(1,1-dimethylethyl)Phenol 등 페놀성 화합물이 다수 동정되었다. 본 연구결과에 의해 연자육은 항산화 및 암 예방적 소재로써의 새로운 기능성 식품소재로서 충분한 가능성이 있다고 판단된다.

마늘의 조리방법에 따른 DNA 손상 보호 효과의 비교 (Protective Effect of Garlic (Allium sativum L.) Extracts Prepared by Different Processing Methods on DNA Damage in Human Leukocytes)

  • 김정미;전경임;박은주
    • 한국식품영양과학회지
    • /
    • 제39권6호
    • /
    • pp.805-812
    • /
    • 2010
  • 본 연구에서는 조리법에 따른 마늘의 항 유전 독성 효과를 확인하기 위해 생마늘, 구운 마늘, 초절임 마늘의 에탄올 또는 메탄올 추출물을 백혈구에 처리한 후 comet assay를 수행하였다. 그 결과 조리 방법, 추출 용매에 상관없이 모든 추출물에서 DNA 손상 억제 효과가 것으로 나타났으며 활성산소인 $H_2O_2$에 대한 DNA 손상 억제 효과는 생마늘 메탄올 추출물에서, 지질과산화물인 HNE에 대한 DNA 손상 억제 효과는 구운 마늘 메탄올 추출물에서 높은 것으로 나타났다. 또한 $H_2O_2$로 유도한 스트레스에서는 마늘 추출물의 농도를 1, 5, 10, 50 ${\mu}g$/mL으로 증가시킬수록 DNA 손상 억제능이 좋은 것으로 나타난 반면 HNE로 스트레스를 유도한 군에서는 저농도인 1 ${\mu}g$/mL에서 오히려 높은 효능이 나타났다. 따라서 마늘의 항 유전 독성 효과는 한국인의 일반적인 마늘 섭취 형태인 생마늘, 구운 마늘, 초절임 마늘에 상관없이 탁월한 것을 알 수 있었다. 이와 같은 마늘의 항 유전 독성효과는 식재료로써의 마늘의 소비 및 의약품 소재로써의 이용성을 증진시킬 수 있는 자료가 될 것으로 사료된다.

Oxidative stress on anaerobes

  • Takeuchi, Toru;Shi, Minyi;Kato, Naoki;Watanabe, Kunitomo;Morimoto, Kanehisa
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.142-145
    • /
    • 2002
  • A strict anaerobe, Prevotella melaninogenica is highly sensitive to oxidative stress. Oxidative stress such as exposure to oxygen or addition of hydrogen peroxide, increased 8-hydroxydeoxyguanosine (80HdG), a typical of oxidative DNA damage, and decreased the bacterial cell survival rate. We could detect the generation of reactive oxygen species in P. melaninogenica after exposure to oxygen. UVA irradiation also increased 80HdG in the bacterium. On the other hand, such oxidative stress did not increase 80HdG in a facultative anaerobe. These findings suggest that P. melaninogenica is a suitable material to study the biological effects of oxidative stress, to evaluate antioxidants, and to study the effects of oxygen or reactive oxygen species on molecular evolution.

  • PDF

Suppressive Effect of Aqueous Extract of Red-Ginseng on the Herbicide-induced DNA Damage and Hemolysis

  • Seo, Yoo-Na;Lee, Mi-Young
    • Journal of Applied Biological Chemistry
    • /
    • 제53권4호
    • /
    • pp.202-206
    • /
    • 2010
  • The effects of aqueous extracts of red ginseng on the damage of DNA and erythrocyte by herbicides were evaluated using comet assay and hemolysis assay. Notably, the oxidative DNA damage and erytbrocyte hemolysis by 2,4-D (2,4-dichlorophenoxyacetic acid) and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were significantly suppressed by red ginseng treatment. Moreover, red ginseng could suppress significantly paraquat-induced oxidative DNA damage and hemolysis. These suppressive effects of red ginseng on the herbicide-induced damages might be due to the antioxidant components.

Oxidative Stress Induced Damage to Paternal Genome and Impact of Meditation and Yoga - Can it Reduce Incidence of Childhood Cancer?

  • Dada, Rima;Kumar, Shiv Basant;Chawla, Bhavna;Bisht, Shilpa;Khan, Saima
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권9호
    • /
    • pp.4517-4525
    • /
    • 2016
  • Background: Sperm DNA damage is underlying aetiology of poor implantation and pregnancy rates but also affects health of offspring and may also result in denovo mutations in germ line and post fertilization. This may result in complex diseases, polygenic disorders and childhood cancers. Childhood cancer like retinoblastoma (RB) is more prevalent in developing countries and the incidence of RB has increased more than three fold in India in the last decade. Recent studies have documented increased incidence of cancers in children born to fathers who consume alcohol in excess and tobacco or who were conceived by assisted conception. The aetiology of childhood cancer and increased disease burden in these children is lin ked to oxidative stress (OS) and oxidative DNA damage( ODD) in sperm of their fathers. Though several antioxidants are in use to combat oxidative stress, the effect of majority of these formulations on DNA is not known. Yoga and meditation cause significant decline in OS and ODD and aid in regulating OS levels such that reactive oxygen speues meditated signal transduction, gene expression and several other physiological functions are not disrupted. Thus, this study aimed to analyze sperm ODD as a possible etiological factor in childhood cancer and role of simple life style interventions like yoga and meditation in significantly decreasing seminal oxidative stress and oxidative DNA damage and thereby decreasing incidence of childhood cancers. Materials and Methods: A total of 131 fathers of children with RB (non-familial sporadic heritable) and 50 controls (fathers of healthy children) were recruited at a tertiary center in India. Sperm parameters as per WHO 2010 guidelines and reactive oxygen species (ROS), DNA fragmentation index (DFI), 8-hydroxy-2'-deoxy guanosine (8-OHdG) and telomere length were estimated at day 0, and after 3 and 6 months of intervention. We also examined the compliance with yoga and meditation practice and smoking status at each follow-up. Results: The seminal mean ROS levels (p<0.05), sperm DFI (p<0.001), 8-OHdG (p<0.01) levels were significantly higher in fathers of children with RB, as compared to controls and the relative mean telomere length in the sperm was shorter. Levels of ROS were significantly reduced in tobacco users (p<0.05) as well as in alcoholics (p<0.05) after intervention. DFI reduced significantly (p<0.05) after 6 months of yoga and meditation practice in all groups. The levels of oxidative DNA damage marker 8-OHdG were reduced significantly after 3 months (p<0.05) and 6 months (p<0.05) of practice. Conclusions: Our results suggest that OS and ODD DNA may contribute to the development of childhood cancer. This may be due to accumulation of oxidized mutagenic base 8OHdG, and elevated MDA levels which results in MDA dimers which are also mutagenic, aberrant methylation pattern, altered gene expression which affect cell proliferation and survival through activation of transcription factors. Increased mt DNA mutations and aberrant repair of mt and nuclear DNA due to highly truncatred DNA repair mechanisms all contribute to sperm genome hypermutability and persistant oxidative DNA damage. Oxidative stress is also associated with genome wide hypomethylation, telomere shortening and mitochondrial dysfunction leading to genome hypermutability and instability. To the best of our knowledge, this is the first study to report decline in OS and ODD and improvement in sperm DNA integrity following adoption of meditation and yoga based life style modification.This may reduce disease burden in next generation and reduce incidence of childhood cancers.

산화적 스트레스에 의한 간세포의 DNA 손상 및 apoptosis 유도에 대한 노근 추출물의 보호 효과 (Protective Effect of Phragmitis Rhizoma against Oxidative Stress-induced DNA Damage and Apoptosis in Chang Liver Cells)

  • 이희영;홍상훈;박상은
    • 대한한방내과학회지
    • /
    • 제42권6호
    • /
    • pp.1269-1284
    • /
    • 2021
  • Objectives: Phragmitis Rhizoma is the fresh or dried rhizome of Phragmites communis Trin., which has been prescribed in traditional Korean medicine to relieve fever and vomiting and to nourish the body fluids. Recently, the protective effect of Phragmitis Rhizoma extract or its components on myelotoxicity and inflammatory responses have been reported, but no study has yet been conducted on oxidative stress. Methods: The present study investigated whether an ethanol extract of Phragmitis Rhizoma (PR) could protect against cellular damage induced by oxidative stress in Chang liver cells. Results: Pretreatment with PR significantly suppressed the hydrogen peroxide (H2O2)-induced reduction of Chang cell viability and generation of reactive oxygen species (ROS), thereby deferring apoptosis. PR also markedly inhibited H2O2-induced comet tail formation and phospho-γH2AX expression, suggesting that PR protected against oxidative stress-mediated DNA damage. PR also effectively prevented the inhibition of ATP synthesis in H2O2-treated Chang cells by inhibiting the loss of mitochondrial membrane potential, indicating that PR maintains energy metabolism through preservation of mitochondrial function while eliminating ROS generated by H2O2. Immunoblotting results indicated that PR attenuated the H2O2-induced downregulation of Bcl-2 and upregulation of Bax expression. Conclusions: PR protects against oxidative injury in Chang liver cells by regulating energy homeostasis via ROS generation blockade, which is at least partly mediated through inactivation of the mitochondria-mediated apoptosis pathway.