• Title/Summary/Keyword: oxidation time

Search Result 1,543, Processing Time 0.025 seconds

Rapid Fabrication of Cu/Cu2O/CuO Photoelectrodes by Rapid Thermal Annealing Technique for Efficient Water Splitting Application

  • Lee, Minjeong;Bae, Hyojung;Rho, Hokyun;Burungale, Vishal;Mane, Pratik;Seong, Chaewon;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.39-45
    • /
    • 2020
  • The Cu/Cu2O/CuO photoelectrode has been successfully fabricated by Rapid Thermal Annealing technique. The structural characterization of fabricated photoelectrode was performed using X-Ray diffraction, while elemental composition of the prepared material has been checked with X-Ray Photoelectron Spectroscopy. The synthesis parameters are optimized on the basis of photoelectrochemical performance. The best photoelectrochemical performance has been observed for the Cu/Cu2O/CuO photoelectrode fabricated at 550 ℃ oxidation temperature and oxidation time of 50 seconds with highest photocurrent density of -3 mA/㎠ at -0.13 V vs. RHE.

Development of analysis program for direct containment heating

  • Jiang, Herui;Shen, Geyu;Meng, Zhaoming;Li, Wenzhe;Yan, Ruihao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3130-3139
    • /
    • 2022
  • Direct containment heating (DCH) is one of the potential factors leading to early containment failure. DCH is closely related to safety analysis and containment performance evaluation of nuclear power plants. In this study, a DCH prediction program was developed to analyze the DCH loads of containment vessel. The phenomenological model of debris dispersal, metal oxidation reaction, debris-atmospheric heat transfer and hydrogen jet burn was established. Code assessment was performed by comparing with several separate effect tests and integral effect tests. The comparison between the predicted results and experimental data shows that the program can predict the key parameters such as peak pressure, temperature, and hydrogen production in containment well, and for most comparisons the relative errors can be maintained within 20%. Among them, the prediction uncertainty of hydrogen production is slightly larger. The analysis shows that the main sources of the error are the difference of time scale and the oxidation of cavity debris.

Thermic Effect of Food, Macronutrient Oxidation Rate and Satiety of Medium-chain Triglyceride (중쇄중성지방(MCT)의 식이성 발열효과, 영양소 산화율 및 포만도)

  • Son, Hee-Ryoung;Lee, Myung-Ju;Kim, Eun-Kyung
    • Korean Journal of Community Nutrition
    • /
    • v.20 no.6
    • /
    • pp.468-478
    • /
    • 2015
  • Objectives: The objective of this study was to evaluate the thermic effects, the macronutrient oxidation rates and the satiety of medium-chain triglycerides (MCT). Methods: The thermic effects of two meals containing MCT or long-chain triglycerides (LCT) were compared in ten healthy men (mean age $24.4{\pm}2.9years$). Energy content of the meal was 30% of resting metabolic rate of each subject. Metabolic rate and macronutrient oxidation rate were measured before the meals and for 6 hours after the meals by indirect calorimetry. Satiety was estimated by using visual analogue scales (VAS) at 8 times (before the meal and for 6 hours after meal). Results: Total thermic effect of MCT meal (42.8 kcal, 8.0% of energy intake) was significantly higher than that (26.8 kcal, 5.1% of energy intake) of the LCT meal. Mean postprandial oxygen consumption was also significantly different between the two types of meals (MCT meal: $0.29{\pm}0.35L/min$, LCT meal: $0.28{\pm}0.27L/min$). There were no significant differences in total postprandial carbohydrate and fat oxidation rates between the two meals. However, from 30 to 120 minutes after consumption of meals, the fat oxidation rate of MCT meal was significantly higher than that of the LCT meal. Comparison of satiety values (hunger, fullness and appetite) between the two meals showed that MCT meal maintained satiety for a longer time than the LCT meal. Conclusions: This study showed the possibility that long-term substitution of MCT for LCT would produce weight loss if energy intake remained constant.

Electrochemical Oxidation of Glucose at Nanoporous Gold Surfaces Prepared by Anodization in Carboxylic Acid Solutions (카복실산 용액에서 양극산화에 의해 형성된 나노다공성 금 표면상의 전기화학적 글루코오스 산화)

  • Roh, Seongjin;Jeong, Hwakyeung;Lee, Geumseop;Kim, Minju;Kim, Jongwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.74-80
    • /
    • 2013
  • We investigate the formation of nanoporous gold (NPG) surfaces by anodization in three carboxylic acid (formic acid, acetic acid, and propionic acid) solutions and the electrochemical oxidation of glucose at NPG surfaces. Among three carboxylic acids, formic acid provided the most efficient conditions for NPG formation towards glucose oxidation. The optimized conditions during anodization in formic acid for glucose oxidation were 5.0 V of applied potential and 4 hour of reaction time. Electrocatalytic activities for glucose oxidation at NPG surfaces prepared by anodization in carboxylic acids were examined under the absence and presence of chloride ions, which were compared to those observed at NPG prepared in oxalic acid solutions. The application NPG prepared by optimized anodization conditions in formic acid to the amperometric detection of glucose was demonstrated.

Oxidation Behavior of $UO_2$ Fuel ($UO_2$ 핵연료의 산화거동)

  • Kang Kweon-Ho;Moon Heung-Soo;Na Sang-Ho;Oh Se-Yong
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.8-13
    • /
    • 2006
  • The oxidation behavior of $UO_2$, pellet was studied using an XRD and a thermogravimetric analyzer in the temperature range from 573 to 873 K and in the density range from 94.64 to 99.10% of theoretical density in air. It was found from the XRD study that $UO_2$ was completely converted to $U_3O_8$ in this experimental temperature range. The formation of $U_3O_8$ displays sigmoidal reaction kinetics. The oxidation rate was reduced with density. Induction time for the oxidation of $UO_2$ was delayed with density because of open pore formed in surface of $UO_2$ pellet. The activation energy for oxidation of $UO_2$ was determined to be 89.54 kJ/mol and 34.40 kJ/mol in the temperature range from 573 to 723 K and from 723 to 873 K, respectively.

Study on Oxidation-Reaction Bonding of Aluminum Compact by Pressureless Powder Packing Method (무가압 분말 충전 성형법에 의한 알루미늄 성형체의 산화반응 소결체 제조에 대한 연구)

  • 박정현;홍기의;염강섭;유재영
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.95-101
    • /
    • 1997
  • Using aluminum powder with average particle size of 22.1 $\mu$m, aluminum compact made by Pressureless Powder Packing Method showed 52% green density. The activation energy of aluminum oxidation was cal-culated from the weight change of TG, and it was varied in the range of 16~64 kJ/mol. It was found from the variation of the activation energy and the observation of the microstructure that oxidation was de-pendent on the destruction of oxide film and the melt-out of aluminum. Aluminum compact was reaction-bonded at 1000~140$0^{\circ}C$ for 4~60hrs, and oxidation was dependent on temperature rather than time. Reac-tion-bonded aluminum oxide at 140$0^{\circ}C$ for 60hrs showed 92% oxidation percent. It was sintered at 1$600^{\circ}C$ for 15hrs and the sintered body showed 62% relative density.

  • PDF

Effect of H2S on Reactivity of Oxygen Carrier Particle for Chemical Looping Combustion (매체순환연소용 산소전달입자의 반응성에 미치는 H2S의 영향)

  • KIM, HANA;MOON, JONG-HO;JIN, GYOUNG-TAE;BAEK, JEOM-IN;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.412-420
    • /
    • 2016
  • Effect of $H_2S$ on reactivity of oxygen carrier was measured and discussed using fluidized bed reactor and SDN70 oxygen carrier. We could get 100% of fuel conversion and $CO_2$ selectivity even though $H_2S$ containing simulated syngas was used as fuel for reduction. Absorbed sulfur was released during oxidation and $N_2$ purge step after oxidation as $SO_2$ form. We could get 100% of fuel conversion and $CO_2$ selectivity during cyclic reduction-oxidation tests up to 10th cycle. However, only 6~7% of sulfur can be removed during oxidation and $N_2$ purge step and 93~94% of sulfur was accumulated in the oxygen carrier. Therefore we could conclude that total removal of sulfur was not possible. $SO_2$ emission during oxidation decreased as the number of cycle increased. Therefore we could expect that the reactivity of oxygen carrier will be decreased with time.

The Effect of Oxides Additives on Anti-corrosion Properties of Sintered 316L Stainless Steel (STS 316L 소결체의 부식 저항 특성에 미치는 금속산화물 첨가의 영향)

  • Lee, Jong-Pil;Hong, Ji-Hyun;Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • As wrought stainless steel, sintered stainless steel (STS) has excellent high-temperature anti-corrosion even at high temperature of $800^{\circ}C$ and exhibit corrosion resistance in air. The oxidation behavior and oxidation mechanism of the sintered 316L stainless was reported at the high temperature in our previous study. In this study, the effects of additives on high-temperature corrosion resistances were investigated above $800^{\circ}C$ at the various oxides ($SiO_2$, $Al_2O_3$, MgO and $Y_2O_3$) added STS respectively as an oxidation inhibitor. The morphology of the oxide layers were observed by SEM and the oxides phase and composition were confirmed by XRD and EDX. As a result, the weight of STS 316L sintered body increased sharply at $1000^{\circ}C$ and the relative density of specimen decreased as metallic oxide addition increased. Compared with STS 316L sintered parts, weight change ratio corresponding to different oxidation time at $900^{\circ}C$ and $1000^{\circ}C$, decreased gradually with the addition of metallic oxide. The best corrosion resistance properties of STS could be improved in case of using $Y_2O_3$. The oxidation rate was diminished dramatically by suppression the peeling on oxide layers at $Y_2O_3$ added sintered stainless steel.

Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

  • Cheng, Bo;Kim, Young-Jin;Chou, Peter
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.16-25
    • /
    • 2016
  • In severe loss of coolant accidents (LOCA), similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconiumalloy fuel claddingmaterials are rapidlyheateddue to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF) design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI) is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in $1,200-1,500^{\circ}C$ steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstratedcorrosionresistance.Asthese composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Moalloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are discussed in this document. In addition to assisting plants in meeting Light Water Reactor (LWR) challenges, accident-tolerant Mo-based cladding technologies are expected to be applicable for use in high-temperature helium and molten salt reactor designs, as well as nonnuclear high temperature applications.

Reaction-Bonded Al2O3 Ceramics Using Oxidation of Al Alloy Powder

  • Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.236-242
    • /
    • 2014
  • Fabrication of reaction-bonded $Al_2O_3$ (RBAO) ceramics using Al-Zn-Mg alloy powder was studied in order to improve traditional RBAO ceramic processing using Al powder. The influence on reaction-bonding and microstructure, as well as on physical and mechanical properties, of the particulate characteristics of the $Al_2O_3$-Al alloy powder mixtures after milling, was revealed. Variation of the particulate characteristics of this $Al_2O_3$-Al alloy powder mixture with milling time was reported previously. To start, the $Al_2O_3$-Al alloy powder mixture was milled, reaction-bonded, post-sintered, and characterized. During reaction-bonding of the $Al_2O_3$-Al alloy powder mixture compacts, oxidation of the Al alloy took place in two stages, that is, there was solid- and liquid-state oxidation of the Al alloy. The solid-state oxidation exhibited strong dependence on the density of surface defects on the Al-alloy particles formed during milling. Higher milling efficiency resulted in less participation of the Al alloy in reaction-bonding. This was because of its consumption by chemical reactions during milling, and subsequent powder handling, and could be rather harmful in the case of over-milling. In contrast to very little dependence of oxidation of the Al alloy on its particle size after milling, the relative density, microstructure, and flexural strength were strongly dependent on particle size after milling (i.e., on milling efficiency). The relative density and 4-point flexural strength of the RBAO ceramics in this study were ~98% and ~365 MPa, respectively, after post-sintering at $1,600^{\circ}C$.