DOI QR코드

DOI QR Code

Rapid Fabrication of Cu/Cu2O/CuO Photoelectrodes by Rapid Thermal Annealing Technique for Efficient Water Splitting Application

  • Lee, Minjeong (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Bae, Hyojung (Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Rho, Hokyun (Energy Convergence Core Facility, Chonnam National University) ;
  • Burungale, Vishal (Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Mane, Pratik (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Seong, Chaewon (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Ha, Jun-Seok (Department of Advanced Chemicals & Engineering, Chonnam National University)
  • Received : 2020.11.30
  • Accepted : 2020.12.08
  • Published : 2020.12.30

Abstract

The Cu/Cu2O/CuO photoelectrode has been successfully fabricated by Rapid Thermal Annealing technique. The structural characterization of fabricated photoelectrode was performed using X-Ray diffraction, while elemental composition of the prepared material has been checked with X-Ray Photoelectron Spectroscopy. The synthesis parameters are optimized on the basis of photoelectrochemical performance. The best photoelectrochemical performance has been observed for the Cu/Cu2O/CuO photoelectrode fabricated at 550 ℃ oxidation temperature and oxidation time of 50 seconds with highest photocurrent density of -3 mA/㎠ at -0.13 V vs. RHE.

Keywords

References

  1. H. Kim, H. Bae, S. J. Kang, and J. S. Ha, "MnO2 co-catalyst effect on Photoelectrochemical Properties of GaN Photoelectrode", J. Microelectron. Packag. Soc., 23(4), 113 (2016). https://doi.org/10.6117/kmeps.2016.23.4.113
  2. S. W. Bang, H. Kim, H. Bae, J. W. Ju, S. J. Kang, and J. S. Ha, "Improvement of Photoelectrochemical Properties through Activation Process of p-type GaN", J. Microelectron. Packag. Soc., 24(4), 59 (2017). https://doi.org/10.6117/KMEPS.2017.24.4.059
  3. Y. S. Chaudharya, A. Agrawala, R. Shrivastava, V. R. Satsangib, and S. Dassa, "A study on the photoelectrochemical properties of copper oxide thin fims", International Journal of Hydrogen Energy, 29(2), 131, (2004). https://doi.org/10.1016/S0360-3199(03)00109-5
  4. R. K. Ahluwalia and J. K. Peng, "Automotive hydrogen storage system using cryoadsorption on activated carbon", International Journal of Hydrogen Energy, 34(13), 5476 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.023
  5. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects", International Journal of Hydrogen Energy, 27(10), 991 (2002). https://doi.org/10.1016/S0360-3199(02)00022-8
  6. E. Bequerel, "Recherches sur les effets de la radiation chimique de la lumie re solaire, au moyen des courants e' lectriques", CR Acad. Sci., 9(145), 1 (1839).
  7. M. Gratzel, "Photoelectrochemical cells", pp.26-32, Materials for Sustainable Energy, (2010).
  8. A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, 238, 37 (1972). https://doi.org/10.1038/238037a0
  9. M. A. Khan, M. S. Akhtar, S. I. Woo, and O.-B. Yang, "Enhanced photoresponse under visible light in Pt ionized TiO2 nanotube for the photocatalytic splitting of water", Catalysis Communications, 10(1), 1 (2008). https://doi.org/10.1016/j.catcom.2008.01.018
  10. J. Li, X. Jin, R. Li, Y. Zhao, X. Wang, X. Liu, and H. Jiao, "Copper oxide nanowires for efficient photoelectrochemical water splitting", Applied Catalysis B: Environmental, 240, 1 (2019). https://doi.org/10.1016/j.apcatb.2018.08.070
  11. C. Zhao and J. Wang, "Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts", Chemical Engineernig Journal, 293, 161 (2016). https://doi.org/10.1016/j.cej.2016.02.084
  12. J. Han, X. Zong, X. Zhou, and C. Li, "Cu2O/CuO photocathode with improved stability for photoelectrochemical water reduction", Rsc Adv., 5(14), 10790 (2015). https://doi.org/10.1039/C4RA13896A
  13. V. H. Castrejon-Sanchez, A. C. Solis, R. Lopez, C. Encarnacion-Gomez, F. M. Morales, O. S. Vargas, J. E. Mastache-Mastache, and G. V. Sanchez, "Thermal oxidation of copper over a broad temperature range: Towards the formation of cupric oxide (CuO)", Mater. Res. Express., 6(7), 075909 (2019). https://doi.org/10.1088/2053-1591/ab1662