Rapid Fabrication of Cu/Cu2O/CuO Photoelectrodes by Rapid Thermal Annealing Technique for Efficient Water Splitting Application |
Lee, Minjeong
(Department of Advanced Chemicals & Engineering, Chonnam National University)
Bae, Hyojung (Optoelectronics Convergence Research Center, Chonnam National University) Rho, Hokyun (Energy Convergence Core Facility, Chonnam National University) Burungale, Vishal (Optoelectronics Convergence Research Center, Chonnam National University) Mane, Pratik (Department of Advanced Chemicals & Engineering, Chonnam National University) Seong, Chaewon (Department of Advanced Chemicals & Engineering, Chonnam National University) Ha, Jun-Seok (Department of Advanced Chemicals & Engineering, Chonnam National University) |
1 | H. Kim, H. Bae, S. J. Kang, and J. S. Ha, "MnO2 co-catalyst effect on Photoelectrochemical Properties of GaN Photoelectrode", J. Microelectron. Packag. Soc., 23(4), 113 (2016). DOI |
2 | S. W. Bang, H. Kim, H. Bae, J. W. Ju, S. J. Kang, and J. S. Ha, "Improvement of Photoelectrochemical Properties through Activation Process of p-type GaN", J. Microelectron. Packag. Soc., 24(4), 59 (2017). DOI |
3 | R. K. Ahluwalia and J. K. Peng, "Automotive hydrogen storage system using cryoadsorption on activated carbon", International Journal of Hydrogen Energy, 34(13), 5476 (2009). DOI |
4 | A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, 238, 37 (1972). DOI |
5 | T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects", International Journal of Hydrogen Energy, 27(10), 991 (2002). DOI |
6 | E. Bequerel, "Recherches sur les effets de la radiation chimique de la lumie re solaire, au moyen des courants e' lectriques", CR Acad. Sci., 9(145), 1 (1839). |
7 | M. Gratzel, "Photoelectrochemical cells", pp.26-32, Materials for Sustainable Energy, (2010). |
8 | M. A. Khan, M. S. Akhtar, S. I. Woo, and O.-B. Yang, "Enhanced photoresponse under visible light in Pt ionized TiO2 nanotube for the photocatalytic splitting of water", Catalysis Communications, 10(1), 1 (2008). DOI |
9 | J. Li, X. Jin, R. Li, Y. Zhao, X. Wang, X. Liu, and H. Jiao, "Copper oxide nanowires for efficient photoelectrochemical water splitting", Applied Catalysis B: Environmental, 240, 1 (2019). DOI |
10 | C. Zhao and J. Wang, "Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts", Chemical Engineernig Journal, 293, 161 (2016). DOI |
11 | Y. S. Chaudharya, A. Agrawala, R. Shrivastava, V. R. Satsangib, and S. Dassa, "A study on the photoelectrochemical properties of copper oxide thin fims", International Journal of Hydrogen Energy, 29(2), 131, (2004). DOI |
12 | J. Han, X. Zong, X. Zhou, and C. Li, "Cu2O/CuO photocathode with improved stability for photoelectrochemical water reduction", Rsc Adv., 5(14), 10790 (2015). DOI |
13 | V. H. Castrejon-Sanchez, A. C. Solis, R. Lopez, C. Encarnacion-Gomez, F. M. Morales, O. S. Vargas, J. E. Mastache-Mastache, and G. V. Sanchez, "Thermal oxidation of copper over a broad temperature range: Towards the formation of cupric oxide (CuO)", Mater. Res. Express., 6(7), 075909 (2019). DOI |