Browse > Article
http://dx.doi.org/10.6117/kmeps.2020.27.4.039

Rapid Fabrication of Cu/Cu2O/CuO Photoelectrodes by Rapid Thermal Annealing Technique for Efficient Water Splitting Application  

Lee, Minjeong (Department of Advanced Chemicals & Engineering, Chonnam National University)
Bae, Hyojung (Optoelectronics Convergence Research Center, Chonnam National University)
Rho, Hokyun (Energy Convergence Core Facility, Chonnam National University)
Burungale, Vishal (Optoelectronics Convergence Research Center, Chonnam National University)
Mane, Pratik (Department of Advanced Chemicals & Engineering, Chonnam National University)
Seong, Chaewon (Department of Advanced Chemicals & Engineering, Chonnam National University)
Ha, Jun-Seok (Department of Advanced Chemicals & Engineering, Chonnam National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.27, no.4, 2020 , pp. 39-45 More about this Journal
Abstract
The Cu/Cu2O/CuO photoelectrode has been successfully fabricated by Rapid Thermal Annealing technique. The structural characterization of fabricated photoelectrode was performed using X-Ray diffraction, while elemental composition of the prepared material has been checked with X-Ray Photoelectron Spectroscopy. The synthesis parameters are optimized on the basis of photoelectrochemical performance. The best photoelectrochemical performance has been observed for the Cu/Cu2O/CuO photoelectrode fabricated at 550 ℃ oxidation temperature and oxidation time of 50 seconds with highest photocurrent density of -3 mA/㎠ at -0.13 V vs. RHE.
Keywords
Cu; $Cu_2O$; CuO; Oxidation; Photoelectrode; Water splitting;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Kim, H. Bae, S. J. Kang, and J. S. Ha, "MnO2 co-catalyst effect on Photoelectrochemical Properties of GaN Photoelectrode", J. Microelectron. Packag. Soc., 23(4), 113 (2016).   DOI
2 S. W. Bang, H. Kim, H. Bae, J. W. Ju, S. J. Kang, and J. S. Ha, "Improvement of Photoelectrochemical Properties through Activation Process of p-type GaN", J. Microelectron. Packag. Soc., 24(4), 59 (2017).   DOI
3 R. K. Ahluwalia and J. K. Peng, "Automotive hydrogen storage system using cryoadsorption on activated carbon", International Journal of Hydrogen Energy, 34(13), 5476 (2009).   DOI
4 A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, 238, 37 (1972).   DOI
5 T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects", International Journal of Hydrogen Energy, 27(10), 991 (2002).   DOI
6 E. Bequerel, "Recherches sur les effets de la radiation chimique de la lumie re solaire, au moyen des courants e' lectriques", CR Acad. Sci., 9(145), 1 (1839).
7 M. Gratzel, "Photoelectrochemical cells", pp.26-32, Materials for Sustainable Energy, (2010).
8 M. A. Khan, M. S. Akhtar, S. I. Woo, and O.-B. Yang, "Enhanced photoresponse under visible light in Pt ionized TiO2 nanotube for the photocatalytic splitting of water", Catalysis Communications, 10(1), 1 (2008).   DOI
9 J. Li, X. Jin, R. Li, Y. Zhao, X. Wang, X. Liu, and H. Jiao, "Copper oxide nanowires for efficient photoelectrochemical water splitting", Applied Catalysis B: Environmental, 240, 1 (2019).   DOI
10 C. Zhao and J. Wang, "Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts", Chemical Engineernig Journal, 293, 161 (2016).   DOI
11 Y. S. Chaudharya, A. Agrawala, R. Shrivastava, V. R. Satsangib, and S. Dassa, "A study on the photoelectrochemical properties of copper oxide thin fims", International Journal of Hydrogen Energy, 29(2), 131, (2004).   DOI
12 J. Han, X. Zong, X. Zhou, and C. Li, "Cu2O/CuO photocathode with improved stability for photoelectrochemical water reduction", Rsc Adv., 5(14), 10790 (2015).   DOI
13 V. H. Castrejon-Sanchez, A. C. Solis, R. Lopez, C. Encarnacion-Gomez, F. M. Morales, O. S. Vargas, J. E. Mastache-Mastache, and G. V. Sanchez, "Thermal oxidation of copper over a broad temperature range: Towards the formation of cupric oxide (CuO)", Mater. Res. Express., 6(7), 075909 (2019).   DOI