• Title/Summary/Keyword: oxidation time

Search Result 1,547, Processing Time 0.035 seconds

Characterizations of Water-dispersed Biocellulose Nanofibers on the Skin Surface (피부 표면에서의 수분산 바이오셀룰로오스 미세섬유의 특성에 대한 연구)

  • Jun, Seung-Hyun;Kim, Seo Yeon;Park, Sun Gyoo;Lee, Cheon Koo;Lee, Seol-Hoon;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.89-94
    • /
    • 2018
  • In this study, water-dispersed biocellulose nanofibers (TC) were prepared via an oxidation reaction using 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (TEMPO) as a catalyst. The TC retained their unique structure in water as well as in emulsion. TC adhered to the skin surface while maintaining nanofibrous structures, providing inherent functions of biocellulose, such as high tensile strength and high water-holding capacity. When gelatin gels as model skin were coated with TC, the hardness representing the elasticity was increased by 20% compared to untreated gelatin gel because TC could tightly hold the gelatin structure. When porcine skin was treated with TC and TC-contained O/W emulsion, the initial water contact angles of TC were lower than other materials, and dramatically decreased over time as water penetrated the fibrous structure of the TC film. Characterization of TC on the skin surface offered insight into the function of nanofibers on the skin, which is important for their applications with respect to fiber-cosmetics.

Study on Formation Mechanism of Iron Oxide Nanoparticles (산화철 나노입자의 형성 메커니즘에 대한 연구)

  • Kim, Dong-Young;Yoon, Seok-Soo;Takahashi, Migaku
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.167-172
    • /
    • 2012
  • In order to analyze the formation mechanism of iron oxide nanoparticles, we measured the heat flow of $Fe(OL)_3$ precursor with temperature, and TEM images and AC susceptibility of aliquots samples sequentially taken from the reaction solution, respectively. The thermal decomposition of two OL-chain from $Fe(OL)_3$ produced the Fe-OL monomer, which were contributed to the formation of iron oxide nanoparticles. In the initial stage of nanoparticles formation, the small iron oxide nanoparticles had ${\gamma}-Fe_2O_3$ structure. However, as the iron oxide nanoparticles were rapidly growth, the iron oxide nanoparticles showed ${\gamma}-Fe_2O_3$-FeO core-shell structure which the FeO layer was formed on the surface of ${\gamma}-Fe_2O_3$ nanoparticles by insufficient oxygen supply from the reaction solution. These nanoparticles were transformed to $Fe_3O_4$ structure by oxidation during long aging time at high temperature. Finally, the $Fe_3O_4$ nanoparticles with high saturation magnetization and stable in the air could be easily synthesized by the thermal decomposition method.

The Change in Interfacial and Mechanical Properties for Glass Fiber/p-DCPD Composites with Degree of Ruthenium Catalyst Activation (루테늄촉매 활성정도에 따른 유리섬유/폴리다이사이클로펜타다이엔 복합재료의 기계 및 계면물성 변화)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • At ruthenium (Ru) catalyst was exposed from the atmosphere, the degree of catalyst activation decreased. The change of catalyst activity with the number of days of exposure to air for the Ru catalyst was confirmed using the surface tension method quantitatively. Mechanical properties and surfactant change after polymerization by DCPD using Ru catalyst for each air exposure day was evaluated. The Ru catalyst mixed with a dilution agent was exposed in the air and color was monitored for each day. Surface tension was measured using Wilhelmy and PTFE and associated with different catalyst activities. Heat was measured in real time during polymerizing DCPD with Ru catalyst. After polymerization, tensile strength was measured for p-DCPD and the change of material property was measured. Interfacial properties were also evaluated via microdroplet pull-out tests between glass fiber and p-DCPD. The surface tension was stable until the 4 days (33 dyne/cm) whereas the surface energy increased at the 10 days (34 dyne/cm), which could be correlated with oxidation of the catalyst. Tensile property and interfacial shear strength (IFSS) was also stable until the 4 days (tensile strength: 38 MPa and IFSS: 26 MPa) whereas the mechanical property decrease at 10 days (tensile strength: 15 MPa and IFSS: 3 MPa) dramatically.

Quality Characteristics of Chitosan-ascorbate Treated Kwamaegi Prepared by Vacuum Drying, and Lowering Effect of Serum Lipids in Rats Fed High Fat Diets (Chitosan-ascorbate 처리 감압건조 과메기의 품질특성과 고지방식이 흰쥐의 혈청지질에 미치는 영향)

  • Shin, Kyung-Ok;Oh, Seung-Hee;Kim, Sood-Dong
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.669-675
    • /
    • 2007
  • Quality characteristics of Kwamaegi (semi-dried saury) prepared by treatment of chitosan-ascorbate (CA) and vacuum drying at $40{\sim}60^{\circ}C$(VDK), and the effect of the Kwamaegi on serum lipid profiles and anti-oxidation-related enzyme activity in rats fed high fat diets were investigated. The preparation periods were $4.5{\sim}8.3$ hr in VDK, while naturally dried Kwamaegi (NDK) took 360480 hr. Total microbe contents of VDK and NDK were $0.2{\sim}0.5$ and 8.2 log CFU/g, respectively. There was no significant difference in amino-nitrogen content. Compared with NDK, the acid and peroxide value, and fishy flavor of VDK40 (dried at $40^{\circ}C$) were significantly lower, and the texture, color and overall acceptability were higher. In animal experiments, weight gain, content of LDL-cholesterol and lipid peroxide, activities of total (T) and O type (O) xanthine oxidase, and the O/T ratio (%) were significantly lower in the VDK40 diet group than in the NDK diet group. The content of HDL-cholesterol in the VDK40 diet group was higher than in the NDK diet group. These results suggest that preparing CA-treated Kwamaegi with vacuum-drying at $40^{\circ}C$ can be applied throughout the year, and may shorten preparation time and improve its microbiological safety and nutritional values.

Effect of Nitrate in Irrigation Water on Iron Reduction and Phosphate Release in Anoxic Paddy Soil Condition (관개용수 중의 질산 이온이 논토양의 철 환원과 인 용출에 미치는 영향)

  • Kim, Byoung-Ho;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.68-74
    • /
    • 2010
  • Since ${NO_3}^-$ is amore favorable electron acceptor than Fe, high ${NO_3}^-$ loads function as a redox buffer limiting the reduction of Fe and following release of ${PO_4}^{3-}$ in flooded paddy soil. The effect ${NO_3}^-$ loaded through irrigation water on Fe reduction and ${PO_4}^{3-}$ release in paddy soil was investigated. Pot experiment was conducted where irrigation water containing 5 or 10 mg N $L^{-1}$ of ${NO_3}^-$ was continuously applied at 1 cm $day^{-1}$, and changes of ${NO_3}^-$, $Fe^{2+}$ and ${PO_4}^{3-}$ concentrations in soil solution at 5 and 10 cm depths beneath the soil surface were monitored as a function of time. Irrigation of rice paddy with water containing 5 mg N $L^{-1}$ of ${NO_3}^-$ led to reduced release of $Fe^{2+}$ and prevented solubilization of P at 5 cm depth beneath the soil surface. And application of irrigation water containing 10 mg N $L^{-1}$ of ${NO_3}^-$ could further suppress Fe reduction and solubilization of P through 10 cm depth soil layer beneath the surface. These results suggest that the introduction of high level ${NO_3}^-$ with irrigation water in rice paddy can strongly limit Fe reduction and P solubilization in root zone soil layer in addition to the excessive supply of N to rice plants.

Inhibitory Effects of S-allylcysteine on Cell Proliferation of Human Cervical Cancer Cell Line, HeLa (S-allylcysteine의 자궁경부암세포주 HeLa에 대한 세포증식 억제효과)

  • Kim, Hyun Hee;Min, Gyesik
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.397-405
    • /
    • 2015
  • S-allylcysteine (SAC) is a water-soluble organosulfur compound abundant in the aged garlic extract and has been drawing attention as a diet-derived alternative agent not only for the effects of anti-oxidation and anti-inflammation but also for the prevention and treatment of various types of cancer. However, there is no report about the anticancer effects of SAC on cervical cancer cells. The aim of this study was to analyze the inhibitory effects of SAC on cell proliferation of cervical cancer cell line, HeLa and to examine its effects on the apoptosis and cell cycle as the cellular mechanisms of anti-proliferation. For this, we examined effects of different concentrations of SAC on cell proliferation according to treatment periods. Treatment with SAC not only induced morphological changes but also resulted in the reduction of cell viability and the inhibition of concentration- and time-dependant cell proliferation of HeLa. Furthermore, SAC also induced fragmentation of DNA in both DNA fragmentation and TUNEL assays, and induced cell cycle arrest at the G2/M phase in cell cycle analysis. These results suggest that SAC inhibits proliferation of HeLa at least in part through the induction of apoptosis and the cell cycle arrest.

Modelling of Nitrogen Oxidation in Aerated Biofilter Process with ASM3 (부상여재반응기에서 ASM3를 이용한 질산화 공정 모사)

  • Jun, Byonghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2007
  • Process analysis with ASM3 (Activated Sludge Model3) was performed to offer basic data for the optimization of aerated biofilter (ABF) process design and operation. This study was focused on the simulation of the nitrification reaction in ABF which was a part of the advanced nutrient treatment process using bio-adsorption. The ABF process has been developed for the removal of suspended solids and nitrification reaction in sewage. A GPS-X (General Purpose Simualtor-X) was used for the sensitivity analysis and operation assessment. Sensitivity of ASM3 parameters on ABF was analysed and 4 major parameters ($Y_A$, $k_{sto}$, ${\mu}_A$, $K_{A,HN}$) were determined by dynamic simulation using 70 days data from pilot plant operation. The optimized values were 0.14 for $Y_A$, 3.5/d for $k_{sto}$, 2.7/d for ${\mu}_A$ and 1.1 mg/L for $K_{A,HN}$, respectively. Simulation with optimized parameter values were conducted and TN, $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations were estimated and compared with measured data at the range of 10 min to 4 hrs of hydraulic retention time (HRT). The simulated results showed that optimized parameter values could represent the characteristics of ABF process. Especially, the ABF showed relatively high nitrification rate (60%) under very short HRT of 10 min. As a consequence, the ABF was thought to be successfully used in the site which having high variation of influent loading rate.

  • PDF

Thermal Characteristics of Waste Organic Sludges Discharged from an Chemical Product Manufacturing Industry (화학제품제조업에서 배출되는 폐 유기성슬러지의 열적 특성)

  • Kim, Min-Choul;Lee, Gang-Woo;Lee, Man-Sig;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1745-1753
    • /
    • 2008
  • We analyzed the physical and chemical properties such as proximate analysis, ultimate analysis, heating values, thermogravimetric analysis, and combustion test for the organic sludge discharged from chemical and petrochemical product manufacturing industries in the industrial complex. The average combustible and ash content of organic sludges from chemical and petrochemical product manufacturing industries were 17.42%, 7.45%, and 18.25%, 4.22%, respectively. The C, H, O, N, and S compositions for chemical and petrochemical product manufacturing industries were 33.06, 4.34, 24.81, 5.18, and 0.72%. And those compositions for petrochemical product manufacturing industries were 36.58, 4.74, 26.79, 5.09, and 0.49%, respectively. From the TGA test, the minimum temperature for combustion of the sludge discharged from B company was $700^{\circ}C$ for direct use for energy and 2 sludges(F and N companies) were about $600^{\circ}C$. According to the basic combustion test, high concentration of CO was formed because oxidation and pyrolysis reaction take place in the batch type reactor at the same time. From this phenomena we could obtain the significant data for the overheating and breakage of furnace.

Factors of Trichloroethylene Degradation by Methanotrophic Consortium Biofilm Reactor(MCBR) (혼합 메탄자화균 생물막 반응기에 의한 Trichloroethylene 분해의 영향 인자)

  • Lee, Moo-Yeal;Cho, Hyun-Jeong;Yang, Ji-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.991-1000
    • /
    • 2000
  • Methanotrophic consortium utilizing methane as the primary carbon source and secreting soluble methane monooxygenase (sMMO) was immobilized on celite R-635 to continuously treat a wastewater containing trichloroethylene (TCE). With influent 2 ppm of TCE. 80.4 and 84.5% of TCE was degraded in 6 and 20 hour of hydraulic retention time (HRT). respectively. and the removal efficiency of TCE was increased with an increase in HRT in methanotrophic consortium biofilm reactor (MCBR). With influent 5 ppm of TCE and 10 hour of HRT. average efficiency of TCE removal was decreased in initial stage. but gradually increased to 81%. TCE was degraded to 88.5 and 96.5% with 10 and 15 hour of HRT. respectively. when methane was supplied alternately with continuous oxygen supply at influent 5 ppm of TCE. The efficiency of TCE degradation was decreased probably because oxidation reaction of methane was proceeded slowly on MMO. when high concentration of methane was supplied with depletion of oxygen. As results of the pilot-scale study. biodegradation of TCE by MCBR system might be feasible at full-scale operation.

  • PDF

Co-treatment of Sewage Sludge and Cow Manure by Vermistabilization (Vermistabilization에 의한 하수 슬러지와 가축분뇨의 병합처리)

  • 손희정;김형석
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.52-57
    • /
    • 1998
  • The objective of this study was to investigate the effect of cow manure as additive material on the ripening of sewage s sludge for vermistabiJization. The changes of the waste properties by ripening for 50days were observed as a function of the v various mixture ratios of sewage sludge ‘and cow manure. The pH values of the mixture wastes decreased from 7.5-7.67 to 6_ 9~7.2 by the ripening for 50days, and the mixture ratio made dIfferent pH values. The initial value of oxidation-reduction p potential (Eh) of the mixture waste was a negative (-) value indicating an unfavorable condition for earthworm after, but the v values of Eh increased with the opening time. The Increase rate at Eh value was prop$\alpha$rtional to the mixture ratio of cow m manure. The value of alkalinity was also changed into the favorable range for earthworm after 50days except for non-use of 1 the cow manure When the mixture ratio of the cow manure increased from 10% to 30%, the growth of earthworms increased h from 63.7% to 88.3 % tor the survival rate, 265% to 321% for the liveweight increasing rate and 66.7_7% to 91% for hatching f rate of the cocoons. It can be concluded that the proper content of tbe cow manure in the sewage sludge to ensure effective v vermistabilization was over 20%, when the mixture was ripened during 50 days. The quantity of ingestion and 며ectian at 20%-30% was found to be O.15--i.L18g sludge and 0 1l--O.14g solid per capacity earthworm per day, respectively.

  • PDF