• Title/Summary/Keyword: oxidation characterization

Search Result 404, Processing Time 0.029 seconds

Syntheses of FAPO-5 Molecular Sieves with Microwave Irradiation and Their Characterization (마이크로파 가열에 의한 FAPO-5 분자체의 합성 및 특성 분석)

  • Jang, Jong-San;Lee, Jin-Ho;Jeong, Seong-Hwa;Hwang, Jin-Su
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.53-59
    • /
    • 2006
  • .FAPO-5 molecular sieves were synthesized starting from the same reactant gel at 170 oC using microwave irradiation technique and conventional hydrothermal reaction. The FAPO-5 molecular sieves were characterized by several techniques such as SEM, FTIR, UV/Vis, and ESR. Moreover, the oxidation of styrene over FAPO-5s was carried out, and compared to check the oxidation and epoxidation ability of the two FAPO-5s. FAPO-5 can be obtained easily by microwave irradiation within 15 min at 170oC, whereas FAPO-5 synthesis is completed in 6 h by conventional electric heating, confirming the acceleration about 20 times by microwave technique. There are no appreciable differences between two FAPO-5s in surface area and coordination state of iron. The FAPO-5 synthesized by microwave irradiation shows higher epoxide selectivity in the styrene epoxidation, which may be explained by the higher hydrophobicity of the catalyst.

Production and Characterization of a Monoclonal Antibody against Surface Glycoprotein, gp6 1, on K562 Erythroleukemia Cells (K562 적혈구암 세포주의 표면 당단백질에 대한 단클론항체의 생성 및 특성)

  • 김한도;정재훈;홍선화;김정락;한규형;임운기;유미애;이경희;강호성
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.12-20
    • /
    • 1996
  • A multipotential hematopojetic cell line, 1(562 cell, was differentiated into megakaryocyte by a chemical inducer, PMA, with an enhanced expression of gpIlla accompaning with a distinct morphological change. On the other hand, 1(562 cells were differentiated into erythrocytes by other chemical inducers, DMSO or butyrate, with a concomitant increase in hemoglobin accumulation. An antigen of apparent molecular weight of 61 kDa was identified on the surface of 1(562 cells by using monoclonal antibody raised against 1(562 cells. The antigen was considered to be a glycoprotein molecule rich in sialic acids and the epitope of antigen was sensitive to neuraminidase digestion or peroxidase oxidation, but resistant to heat treatment. The 61 kDa surface antigen was increased or decreased in its expression along differentiation of 1(562 cells into megakaryocytes or erythrocytes, respedively.

  • PDF

A Novel Method for Preparing of Oxoruthenates Complexes: trans-[RuO3(OH)2]2-, [RuO4]-, (n-Pr4N)+[RuO4]- and [RuO4 and Their Use as Catalytic Oxidants

  • Shoair, Abdel-Ghany F.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1525-1528
    • /
    • 2005
  • The synthesis and characterization of ${K_3[Ru(C_2O_4)3]{\cdot}4H_2O\;(C_2O_4}^{2-}$ = oxalato anoin) complex are described, and its redox properties (in buffer solution of pH = 12) have been investigated. This complex is used for in situ generation of oxoruthenates complexes which have been characterized by electronic spectroscopy. Reaction of ${K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ with excess ${S_2O_8}^{2-}$ in molar KOH generates trans-${[RuO_3(OH)_2]^{2-}/S_2O_8}^{2-}$ reagent while with excess ${BrO_3}^-$ in molar $Na_2CO_3$ generates ${[RuO_4]^-/BrO_3}^-$ reagent. Avoiding the direct use of [$RuO_4$] the organic-soluble $(n-Pr_4N)^+[RuO_4]^-$, (TPAP) has been isolated by reaction of $K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ with excess ${BrO_3}^-$ in molar carbonate and n-$Pr_4$NOH. In a mixture of $H_2O/CCl_4$ ruthenium tetraoxide can be generated by reaction of $K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ with excess ${IO_4}^-$. The catalytic activities of oxoruthenates that have been made from $K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ towards the oxidation of benzyl alcohol, piperonyl alcohol, benzaldehyde and benzyl amine at room temperature have been studied.

Heat Resistant Low Emissivity Oxide Coating on Stainless Steel Metal Surface and Characterization of Emissivity (스테인리스강 금속 표면에 내열 저방사 산화물 코팅제 적용과 방사 특성 평가)

  • Lim, Hyung-Mi;Kwon, Tae-Il;Kim, Dae-Sung;Lee, Sang-Yup;Kang, Dong-Pil;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.649-656
    • /
    • 2009
  • Inorganic oxide colloids dispersed in alcohol were applied to a stainless steel substrate to produce oxide coatings for the purpose of minimizing emissive thermal transfer. The microstructure, roughness, infrared emissive energy, and surface heat loss of the coated substrate were observed with a variation of the nano oxide sol and coating method. It was found that the indium tin oxide, antimony tin oxide, magnesium oxide, silica, titania sol coatings may reduce surface heat loss of the stainless steel at 300${\circ}C$. It was possible to suppress thermal oxidation of the substrate with the oxide sol coatings during an accelerated thermal durability test at 600${\circ}C$. The silica sol coating was most effective to suppress thermal oxidation at 600${\circ}C$, so that it is useful to prevent the increase of radiative surface heat loss as a heating element. Therefore, the inorganic oxide sol coatings may be applied to improve energy efficiency of the substrate as the heating element.

Isolation and Characterization of a New Hydrogen Sulfide-Oxidizing Bacterium Thiobacillus Sp. (황화수소 산화세균인 새로운 Thiobacillus sp.의 분리 및 특성)

  • Cha, Jin-Myeong;Lee, In-Hwa
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.252-257
    • /
    • 1994
  • A new hydrogen sulfide-oxidation bacterium, Thiobacillus sp. was isolated from waste coal mine water around Hawsun in Chunnam province. The isolate was motile gram-negative rod shape, formed spore and grew up to be aerobically facultative chemolithotroph by using energy released from the oxidation of reduced inorganic sulfur compounds. It could assimilate various kinds of organic compounds and grew well upon thiosulfate-supplemented basal medium. To the lelvel of 32 mM in thiosulfate concentration, thiosulfate in itself was utilized as energy source for growth. However, from those of the higher concentration than 32 mM, thiosulfate functioned specifically as the substrate inhibitor rather than as the energy source. It was found that the optimum thiosulfate concentration for growth was 32 mM. The G+C content of the DNA was 65.0 mol%. The isolate had 16 : 1 + 17$_{cyc}$, 16 : 0 as their major non-hydroxylated cellular fatty acids, 3-OH 12 : 0 as a hydroxylated fatty acid and also contained unidentified $C_{18}$ branched fatty acid. The ubiquinone system in the respiratory chain was Q-9. Based on the physiological and biochemical characteristics, the isolate was assigned to a novel species of the genus Thiobacillus sp. iw.

  • PDF

Characterization of Glycerol Dehydrogenase from Thermoanaerobacterium thermosaccharolyticum DSM 571 and GGG Motif Identification

  • Wang, Liangliang;Wang, Jiajun;Shi, Hao;Gu, Huaxiang;Zhang, Yu;Li, Xun;Wang, Fei
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1077-1086
    • /
    • 2016
  • Glycerol dehydrogenases (GlyDHs) are essential for glycerol metabolism in vivo, catalyzing its reversible reduction to 1,3-dihydroxypropranone (DHA). The gldA gene encoding a putative GlyDH was cloned from Thermoanaerobacterium thermosaccharolyticum DSM 571 (TtGlyDH) and expressed in Escherichia coli. The presence of Mn2+ enhanced its enzymatic activity by 79.5%. Three highly conserved residues (Asp171, His254, and His271) in TtGlyDH were associated with metal ion binding. Based on an investigation of glycerol oxidation and DHA reduction, TtGlyDH showed maximum activity towards glycerol at 60℃ and pH 8.0 and towards DHA at 60℃ and pH 6.0. DHA reduction was the dominant reaction, with a lower Km(DHA) of 1.08 ± 0.13 mM and Vmax of 0.0053 ± 0.0001 mM/s, compared with glycerol oxidation, with a Km(glycerol) of 30.29 ± 3.42 mM and Vmax of 0.042 ± 0.002 mM/s. TtGlyDH had an apparent activation energy of 312.94 kJ/mol. The recombinant TtGlyDH was thermostable, maintaining 65% of its activity after a 2-h incubation at 60℃. Molecular modeling and site-directed mutagenesis analyses demonstrated that TtGlyDH had an atypical dinucleotide binding motif (GGG motif) and a basic residue Arg43, both related to dinucleotide binding.

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF

Preparation and Characterization of Liposome for Iron-Fortified Food Additive (철분 강화 식품첨가제용 리포좀의 제조 및 특성)

  • 이종우;전수진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.5
    • /
    • pp.864-868
    • /
    • 2004
  • Iron is an essential ingredient for all metabolism in a living body However, because of the very low content of the iron in foods, many researches have been performed about iron-fortified food additives. We developed an iron-fortified food additive using the liposome that contain ferrous sulfate and hemin. For preventing the autoxidation of the ferrous sulfate, ascorbic acid was applied. Also, to prevent the oxidation of the liposome induced by the added ferrous sulfate and/or hemin, $\alpha$ -tocopherol was additionally applied. Though the effect of the added aqueous ascorbic acid did not show the antioxidative activity on the liposome containing ferrous sulfate and/or hemin, the added $\alpha$ -tocopherol in the phospholipid bilayer could retard the oxidation of the liposome. These results support that the liposome containing ferrous sulfate, hemin and ascorbic acid with the incorporated $\alpha$ -tocopherol could be applied in the food industry as an iron-fortified additive.

Synthesis, Characterization, and Catalytic Properties of Gp 6 Metal Complexes of 1-N,N-dimethylaminomethyl-$1^{\prime}$,2-bis(diphenylphosphino)ferrocene (FcNPP). X-ray Crystal Structure of W$(CO)_4({\eta}^2-FcNPP(O)-P,N)$

  • Kim, Tae-Jeong;Kim, Yong-Hoon;Kim, Eun-Jin;Oh, Sang-Ho;Kim, Hong-Seok;Jeong, Jong-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.379-386
    • /
    • 1994
  • Reactions of 1',2-bis(diphenylphosphino)-l-(N,N-dimethylaminomethyl)ferrocene (FcNPP) with $M(CO)_6$ (M=Cr, Mo, W) in the presence of TMNO (Trimethylamine oxide) in a stoichiometric ratio of 1 : 1.5 : 3.5 produced a series of Gp 6 metal carbonyl derivatives with a variety of coordination modes: M(CO)$_4({\eta}^2$-FcNPP-P,P) (M=Cr, Mo, W), $M(CO)_5({\eta}^1-FcNPP-P) (M=Mo, W)\;,\; M_2(CO)_9({\eta}^1\;,\;{\eta}^2-FcNPP-P,P,N) (M=Cr, Mo)\;,\;M_2(CO)_{10}({\eta}^1\;,\;{\eta}^1-FcNPP-P,P) (M=Cr, Mo, W)\;, and\;W(CO)_4({\eta}^2-FcNPP(O)-P,N)$. All these complexes were characterized by microanalytical and spectroscopic techniques. In one case, the structure of W(CO)$_4({\eta}^2$-FcNPP(O)-P,N) was determined by X-ray crystallography. Crystals are monocinic, space group P$2_{1/C}$, with a=10.147(2), b=19.902(3), c=19.821(4) ${\AA},\;{\beta}=96.88(2)^{\circ},\;V=3974(l){\AA}^3$, Z=4, and $D_{calc}=1.64 g cm^{-3}$. The geometry around the central tungsten metal is a distorted octahedron, with the nitrogen and phosphorus atoms being cis to each other. Some of these complexes exhibited catalytic activities in the allylic oxidation and epoxidation of cholesterly acetate. Other oxidation products were also formed with the different chemical yields and product distribution depending upon the ligand and the central metal.

Effect of H2O2 modification of H3PW12O40@carbon for m-xylene oxidation to isophthalic acid

  • Fang, Zhou-wen;Wen, Di;Wang, Zhi-hao;Long, Xiang-li
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2172-2184
    • /
    • 2018
  • The production of isophthalic acid (IPA) from the oxidation of m-xylene (MX) by air is catalyzed by $H_3PW_{12}O_{40}$ (HPW) loaded on carbon and cobalt. We used $H_2O_2$ solution to oxidize the carbon to improve the catalytic activity of HPW@C catalyst. Experiments reveal that the best carbon sample is obtained by calcining the carbon at $700^{\circ}C$ for 4 h after being impregnated in the 3.75% $H_2O_2$ solution at $40^{\circ}C$ for 7 h. The surface characterization displays that the $H_2O_2$ modification leads to an increase in the acidic groups and a reduction in the basic groups on the carbon surface. The catalytic capability of the HPW@C catalyst depends on its surface chemical characteristics and physical property. The acidic groups play a more important part than the physical property. The MX conversion after 180 min reaction acquired by the HPW@C catalysts prepared from the activated carbon modified in the best condition is 3.81% over that obtained by the HPW@C catalysts prepared from the original carbon. The IPA produced by the former is 46.2% over that produced by the latter.