Browse > Article
http://dx.doi.org/10.4014/jmb.1512.12051

Characterization of Glycerol Dehydrogenase from Thermoanaerobacterium thermosaccharolyticum DSM 571 and GGG Motif Identification  

Wang, Liangliang (College of Chemical Engineering, Nanjing Forestry University)
Wang, Jiajun (College of Chemical Engineering, Nanjing Forestry University)
Shi, Hao (College of Chemical Engineering, Nanjing Forestry University)
Gu, Huaxiang (College of Chemical Engineering, Nanjing Forestry University)
Zhang, Yu (College of Chemical Engineering, Nanjing Forestry University)
Li, Xun (College of Chemical Engineering, Nanjing Forestry University)
Wang, Fei (College of Chemical Engineering, Nanjing Forestry University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.6, 2016 , pp. 1077-1086 More about this Journal
Abstract
Glycerol dehydrogenases (GlyDHs) are essential for glycerol metabolism in vivo, catalyzing its reversible reduction to 1,3-dihydroxypropranone (DHA). The gldA gene encoding a putative GlyDH was cloned from Thermoanaerobacterium thermosaccharolyticum DSM 571 (TtGlyDH) and expressed in Escherichia coli. The presence of Mn2+ enhanced its enzymatic activity by 79.5%. Three highly conserved residues (Asp171, His254, and His271) in TtGlyDH were associated with metal ion binding. Based on an investigation of glycerol oxidation and DHA reduction, TtGlyDH showed maximum activity towards glycerol at 60℃ and pH 8.0 and towards DHA at 60℃ and pH 6.0. DHA reduction was the dominant reaction, with a lower Km(DHA) of 1.08 ± 0.13 mM and Vmax of 0.0053 ± 0.0001 mM/s, compared with glycerol oxidation, with a Km(glycerol) of 30.29 ± 3.42 mM and Vmax of 0.042 ± 0.002 mM/s. TtGlyDH had an apparent activation energy of 312.94 kJ/mol. The recombinant TtGlyDH was thermostable, maintaining 65% of its activity after a 2-h incubation at 60℃. Molecular modeling and site-directed mutagenesis analyses demonstrated that TtGlyDH had an atypical dinucleotide binding motif (GGG motif) and a basic residue Arg43, both related to dinucleotide binding.
Keywords
Dinucleotide binding; glycerol dehydrogenase; molecular modeling; site-directed mutagenesis; Thermoanaerobacterium thermosaccharolyticum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Raynaud C, Lee J, Sarcabal P, Croux C, Meynial-Salles I, Soucaille P. 2011. Molecular characterization of the glycerol-oxidative pathway of Clostridium butyricum VPI 1718. J. Bacteriol. 193: 3127-3134.   DOI
2 Rosell A, Valencia E, Ochoa WF, Fita I, Pares X, Farres J. 2003. Complete reversal of coenzyme specificity by concerted mutation of three consecutive residues in alcohol dehydrogenase. J. Biol. Chem. 278: 40573-40580.   DOI
3 Rossmann MG, Moras D, Olsen KW. 1974. Chemical and biological evolution of nucleotide-binding protein. Nature 250: 194-199.   DOI
4 Musille P, Ortlund E. 2014. Structure of glycerol dehydrogenase from Serratia. Acta Crystallogr. F Struct. Biol. Commun. 70: 166-172.   DOI
5 Noble JE, Bailey MJ. 2009. Quantitation of protein. Methods Enzymol. 463: 73-95.
6 Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786.   DOI
7 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.   DOI
8 Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.   DOI
9 Bellamacina CR. 1996. The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J. 10: 1257-1269.   DOI
10 Guex N, Peitsch MC. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714-2723.   DOI
11 Bruins ME, Janssen AE, Boom RM. 2001. Thermozymes and their applications: a review of recent literature and patents. Appl. Biochem. Biotechnol. 90: 155-186.   DOI
12 Burke J, Ruzheinikov SN, Sedelnikova S, Baker PJ, Holmes D, Muir NM, et al. 2001. Purification, crystallization and quaternary structure analysis of a glycerol dehydrogenase S305C mutant from Bacillus stearothermophilus. Acta Crystallogr. D Biol. Crystallogr. 57: 165-167.   DOI
13 Chimtong S, Tachaapaikoon C, Pason P, Kyu KL, Kosugi A, Mori Y, Ratanakhanokchai K. 2011. Isolation and characterization of endocellulase-free multienzyme complex from newly isolated Thermoanaerobacterium thermosaccharolyticum strain NOI-1. J. Microbiol. Biotechnol. 21: 284-292.
14 Hanukoglu I. 2015. Proteopedia: Rossmann fold: a beta-alpha-beta fold at dinucleotide binding sites. Biochem. Mol. Biol. Educ. 43: 206-209.   DOI
15 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.   DOI
16 Lesk AM. 1995. NAD-binding domains of dehydrogenases. Curr. Opin. Struct. Biol. 5: 775-783.   DOI
17 Lesley SA, Kuhn P, Godzik A, Deacon AM, Mathews I, Kreusch A, et al. 2002. Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc. Natl. Acad. Sci. USA 99: 11664-11669.   DOI
18 Mariani V, Kiefer F, Schmidt T, Haas J, Schwede T. 2011. Assessment of template based protein structure predictions in CASP9. Proteins 79 Suppl 10: 37-58.   DOI
19 Pei J, Pang Q, Zhao L, Fan S, Shi H. 2012. Thermoanaerobacterium thermosaccharolyticum beta-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol. Biofuels 5: 31.   DOI
20 Matsuzawa T, Ohashi T, Hosomi A, Tanaka N, Tohda H, Takegawa K. 2010. The gld1+ gene encoding glycerol dehydrogenase is required for glycerol metabolism in Schizosaccharomyces pombe. Appl. Microbiol. Biotechnol. 87: 715-727.   DOI
21 Spencer P, Bown KJ, Scawen MD, Atkinson T, Gore MG. 1989. Isolation and characterisation of the glycerol dehydrogenase from Bacillus stearothermophilus. Biochim. Biophys. Acta 994: 270-279.   DOI
22 Truniger V, Boos W. 1994. Mapping and cloning of gldA, the structural gene of the Escherichia coli glycerol dehydrogenase. J. Bacteriol. 176: 1796-1800.   DOI
23 Vieille C, Burdette DS, Zeikus JG. 1996. Thermozymes. Biotechnol. Annu. Rev. 2: 1-83.
24 Watanabe S, Kodaki T, Makino K. 2005. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem. 280: 10340-10349.   DOI
25 Wilkinson KW, Baker PJ, Rice DW, Stillman TJ, Gore MG, Krauss O, Atkinson T. 1995. Crystallization of glycerol dehydrogenase from Bacillus stearothermophilus. Acta Crystallogr. D Biol. Crystallogr. 51: 830-832.   DOI
26 Ruzheinikov SN, Burke J, Sedelnikova S, Baker PJ, Taylor R, Bullough PA, et al. 2001. Glycerol dehydrogenase: structure, specificity, and mechanism of a family III polyol dehydrogenase. Structure 9: 789-802.   DOI
27 Sellek GA, Chaudhuri JB. 1999. Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microb. Technol. 25: 471-482.   DOI
28 Scharschmidt M, Pfleiderer G, Metz H, Brummer W. 1983. Isolation and characterization of glycerol dehydrogenase from Bacillus megaterium. Hoppe Seylers Z. Physiol. Chem. 364: 911-921.   DOI
29 Schwede T, Kopp J, Guex N, Peitsch MC. 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385.   DOI
30 Scrutton NS, Berry A, Perham RN. 1990. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343: 38-43.   DOI