• 제목/요약/키워드: oxidation characterization

검색결과 404건 처리시간 0.027초

에탄올아민화합물 첨가에 대한 니켈의 전기화학적 특성 (Electrochemistry Characterization of Nickel Using Ethanolamine Compound Additives)

  • 박근호
    • 한국응용과학기술학회지
    • /
    • 제27권4호
    • /
    • pp.531-538
    • /
    • 2010
  • The electrochemistry characterization of metal is important in many industrial applications. In this study, we investigated the C-V diagrams related to the electrochemistry characterization of nickel. We determined electrochemical measurement by using cyclic voltammetry with a three electrode system. A measuring range was reduced from initial potential to -1350mV, continuously oxidized to 1650mV and measured to the initial point. The scan rate were 100, 150, 200 and 200mV/s. As a result, the C-V characterization of nickel using ethanolamine and ethylethanolamine inhibitor appeared irreversible process caused by the oxidation current from the cyclic voltammogram. After adding ethanolamine compound additive, adsorption film constituted, and the passive phenomena happened. According to the results by cyclic voltammetry method, it was revealed that the effect of the electrochemistry characterization of nickel depends on ethanolamine structure interaction to adsorption complex.

Ti-Al-N과 Ti-Al-Si-N 코팅막의 상 특성 및 내산화 거동 (Phase Characterization and Oxidation Behavior of Ti-Al-N and Ti-Al-Si-N Coatings)

  • 김정욱;전준하;조건;김광호
    • 한국표면공학회지
    • /
    • 제37권3호
    • /
    • pp.152-157
    • /
    • 2004
  • Ti-Al-N ($Ti_{75}$ $Al_{25}$ N) and Ti-Al-Si-N ($Ti_{69}$ $Al_{23}$ $Si_{8}$N) coatings synthesized by a DC magnetron sputtering technique were studied comparatively with respect to phase characterization and high-temperature oxidation behavior. $Ti_{69}$ $Al_{23}$ $Si_{ 8}$N coating had a nanocomposite microstructure consisting of nanosized(Ti,Al,Si)N crystallites and amorphous $Si_3$$N_4$, with smooth surface morphology. Ti-Al-N coating of which surface $Al_2$$O_3$ layer formed during oxidation suppressed further oxidation. It was sufficiently stable against oxidation up to about $700^{\circ}C$. Ti-Al-Si-N coating showed better oxidation resistance because both surface Ab03 and near-surface $SiO_2$ layers suppressed further oxidation. XRD, GDOES, XPS, and scratch tests were performed.

SILO 구조의 제작 방법과 소자 분리 특성 (Fabrication and characterization of SILO isolation structure)

  • 최수한;장택용;김병렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.328-331
    • /
    • 1988
  • Sealed Interface Local Oxidation (SILO) technology has been investigated using a nitride/oxide/nitride three-layered sandwich structure. P-type silicon substrate was either nitrided by rapid thermal processing, or silicon nitride was deposited by LPCVD method. A three-layered sandwich structure was patterned either by reactive ion etch (RIE) mode or by plasma mode. Sacrificial oxidation conditions were also varied. Physical characterization such as cross-section analysis of field oxide, and electrical characterization such as gate oxide integrity, junction leakage and transistor behavior were carried out. It was found that bird's beak was nearly zero or below 0.1um, and the junction leakages in plasma mode were low compared to devices of the same geometry patterned in RIE mode, and gate oxide integrity and transistor behavior were comparable. Conclusively, SILO process is compatible with conventional local oxidation process.

  • PDF

Electrochemical Oxidation of Amoxicillin in Its Commercial Formulation on Thermally Prepared RuO2/Ti

  • Auguste, Appia Foffie Thiery;Quand-Meme, Gnamba Corneil;Ollo, Kambire;Mohamed, Berte;Sahi placide, Sadia;Ibrahima, Sanogo;Lassine, Ouattara
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.82-89
    • /
    • 2016
  • In this work, a ruthenium dioxide electrode has been prepared by thermal decomposition at 400 ℃ then used for the oxidation of commercial amoxicillin. The physical characterization showed that RuO2 electrode presents a mud cracked structure. Its electrochemical characterization has revealed an increase of the voltammetric charge in acid electrolyte compared to neutral electrolyte indicating the importance of protons in its surface redox processes. The voltammetric study of the oxidation of amoxicillin has been investigated. It has been obtained that the oxidation of amoxicillin is controlled by both adsorption and diffusion processes. Moreover, the oxidation of amoxicillin occurs via direct and indirect processes in free or electrolyte containing chlorides. Through preparative electrolysis, enhancement of amoxicillin oxidation was observed in the presence of chloride where the amoxicillin degradation yield reached more than 50 % compared to less than 5% in the absence of chlorides. Spectrophotometric investigations have revealed the degradation of intermediates absorbing at 350 nm.

아미드 작용기를 가진 부식억제제를 사용한 금속의 전기화학적 특성 (Electrochemistry Characterization of Metal Using Corrosion Inhibitors Containing Amide Functional Group)

  • 박근호
    • 한국응용과학기술학회지
    • /
    • 제28권1호
    • /
    • pp.48-56
    • /
    • 2011
  • In this study, we investigated the C-V diagrams and metal surface related to the electrochemistry characterization of metal(nickel, SUS-304). We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system. A measuring range was reduced from initial potential to -1350mV, continuously oxidized to 1650 mV and measured to the initial point. The scan rate were 50, 100, 150, 200 and 250 mV/s. As a result, the C-V characterization of metal using N,N-dimethylacetamide and N,N-dimethylformamide inhibitors appeared irreversible process caused by the oxidation current from the cyclic voltammogram. After adding organic corrosion inhibitors, adsorption film constituted, and the passive phenomena happened. According to the results by cyclic voltammetry method, it was revealed that the addition of inhibitors containing amide functional group enhances the corrosion resistance properties.

플라즈마 에칭으로 손상된 4H-실리콘 카바이드 기판위에 제작된 MOS 커패시터의 전기적 특성 (Electrical Characterization of MOS (metal-oxide-semiconductor) Capacitors on Plasma Etch-damaged 4H-Silicon Carbide)

  • 조남규;구상모;우용득;이상권
    • 한국전기전자재료학회논문지
    • /
    • 제17권4호
    • /
    • pp.373-377
    • /
    • 2004
  • We have investigated the electrical characterization of metal-oxide-semiconductor (MOS) capacitors formed on the inductively coupled plasma (ICP) etch-damaged both n- and p-type 4H-SiC. We found that there was an effect of a sacrificial oxidation treatment on the etch-damaged surfaces. Current-voltage and capacitance-voltage measurements of these MOS capacitors were used and referenced to those of prepared control samples without etch damage. It has been found that a sacrificial oxidation treatment can improve the electrical characteristics of MOS capacitors on etch-damaged 4H-SiC since the effective interface density and fixed oxide charges of etch-damaged samples have been found to increase while the breakdown field strength of the oxide decreased and the barrier height at the SiC-SiO$_2$ interface decreased for MOS capacitors on etch-damaged surfaces.

알루미늄의 진공증발과 열산화에 의한 알루미나 복합분리막의 제조 및 특성분석 (Synthesis and Characterization of Alumina Composite Membrane by Al Evaporation and Thermal Oxidation)

  • 이동호;최두진;현상훈
    • 한국세라믹학회지
    • /
    • 제32권3호
    • /
    • pp.349-358
    • /
    • 1995
  • The ceramic composite membrane was synthesized by thermal oxidation after evaporation of Al on the support prepared by slip casting process. Oxidation was performed at $700^{\circ}C$ and 80$0^{\circ}C$ under dry oxygen atmosphere. It was considered as optimum oxidation condition that the membrane showed a knudsen behaviro. A further oxidation resulted in an increase of gas permeability because top layer became densified. Then, a multi-layered composite membrane was synthesized through a sol-gel method, evaporation and thermal oxidation of Al coating processes. While the membrane was thermally stable up to 80$0^{\circ}C$, gas permeability was rapidly decreased even at a slight amount of deposition of Al.

  • PDF

Characterization of Ceramic Oxide Layer Produced on Commercial Al Alloy by Plasma Electrolytic Oxidation in Various KOH Concentrations

  • Lee, Jung-Hyung;Kim, Seong-Jong
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.119-124
    • /
    • 2016
  • Plasma electrolytic oxidation (PEO) is a promising coating process to produce ceramic oxide on valve metals such as Al, Mg and Ti. The PEO coating is carried out with a dilute alkaline electrolyte solution using a similar technique to conventional anodizing. The coating process involves multiple process parameters which can influence the surface properties of the resultant coating, including power mode, electrolyte solution, substrate, and process time. In this study, ceramic oxide coatings were prepared on commercial Al alloy in electrolytes with different KOH concentrations (0.5 ~ 4 g/L) by plasma electrolytic oxidation. Microstructural and electrochemical characterization were conducted to investigate the effects of electrolyte concentration on the microstructure and electrochemical characteristics of PEO coating. It was revealed that KOH concentration exert a great influence not only on voltage-time responses during PEO process but also on surface morphology of the coating. In the voltage-time response, the dielectric breakdown voltage tended to decrease with increasing KOH concentration, possibly due to difference in solution conductivity. The surface morphology was pancake-like with lower KOH concentration, while a mixed form of reticulate and pancake structures was observed for higher KOH concentration. The KOH concentration was found to have little effect on the electrochemical characteristics of coating, although PEO treatment improved the corrosion resistance of the substrate material significantly.

Characterization of the UV Oxidation of Raw Natural Rubber Thin Film Using Image and FT-IR Analysis

  • Kim, Ik-Sik;Lee, Bok-Won;Sohn, Kyung-Suk;Yoon, Joohoe;Lee, Jung-Hun
    • Elastomers and Composites
    • /
    • 제51권1호
    • /
    • pp.1-9
    • /
    • 2016
  • Characterization of the UV oxidation for raw natural rubber (NR) was investigated in controlled conditions through image and FT-IR analysis. The UV oxidation was performed on a thin film of natural rubber coated on a KBr window at 254 nm and room temperature to exclude the thermal oxidation. Before or after exposure to UV light, image of the NR thin film was observed at a right or tilted angle. FT-IR absorption spectra were measured in transmission mode with the UV irradiation time. The UV oxidation of NR was examined by the changes of absorption peaks at 3425, 1717, 1084, 1477, 1377, and $833cm^{-1}$ which were assigned to hydroxyl group (-OH), carbonyl group (-C=O), carbon-oxygen bond (-C-O), methylene group $(-CH_2-)$, methyl group $(-CH_3)$, and cis-methine group $(cis-CCH_3=CH-)$, respectively. During the initial exposure period, the results indicated that the appearance of carbonyl group was directly related to the reduction of cis-methine group containing carbon-carbon double bond (-C=C-). Most of aldehydes or ketones from carbon-carbon double bonds were formed very fast by chain scission. A lot of long wide cracks with one orientation at regular intervals which resulted in consecutive chain scission were observed by image analysis. During all exposure periods, on the other hand, it was considered that the continuous increment of hydroxyl and carbonyl group was closely related to the decrement of methylene and methyl group in the allylic position. Therefore, two possible mechanisms for the UV oxidation of NR were suggested.

증착공정을 이용한 $AI_2O_3$ 복합분리막의 제조 및 특성 (Fabrication and Characterization of $AI_2O_3$ Composite Membrane by Depositon Processes)

  • 안상욱;최두진;현상훈
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1993년도 춘계 총회 및 학술발표회
    • /
    • pp.34-34
    • /
    • 1993
  • 세라믹 분리막은 유기질 막에 비하여 열적, 기계적 및 화학적으로 안정하기 때문에 기존의 유기질 막을 사용하기 어려운 작업 조건 하에서도 응용의 잠재성을 가지고 있다. 본 실험은 disk형태의 다공성 $Al_2O_3$ 담체위에 CVD 법과 Evaporation Oxidation 법에 의해 $Al_2O_3$를 코팅하여 세라믹 분리막을 제조하였다. CVD법에 의한 제조는 Al-isopropoxide를 350$\circ$C에서 담체위에 증착시켜 제조하였으며, Evaporation-Oxidation 법에 의한 제조는 Al을 담체위에 evaporation 시킨 후 dry oxidation 시켜서 제조하였다.

  • PDF