• 제목/요약/키워드: oxidation and co-oxidation

검색결과 1,476건 처리시간 0.031초

CO Oxidation Activities of Ni and Pd-TiO2@SiO2 Core-Shell Nanostructures

  • Do, Yeji;Cho, Insu;Park, Yohan;Pradhan, Debabrata;Sohn, Youngku
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3635-3640
    • /
    • 2013
  • We prepared Ni and Pd-modified $TiO_2@SiO_2$ core-shell nanostructures and then analyzed them by scanning electron microscopy, optical microscopy, X-ray diffraction crystallography, FT-IR and UV-Visible absorption spectroscopy. In addition, their CO oxidation performance was tested by temperature-programmed mass spectrometry. The CO oxidation activity showed an order of Ni-$TiO_2@SiO_2$ ($900^{\circ}C$) < Ni-$TiO_2@SiO_2$ ($90^{\circ}C$) < Ni-$TiO_2@SiO_2$ ($450^{\circ}C$) in the first CO oxidation run, and greatly improved activity in the same order in the second run. The $T_{10%}$ (the temperature at 10% CO conversion) corresponds to the CO oxidation rate of $2.8{\times}10^{-5}$ molCO $g{_{cat}}^{-1}s^{-1}$. For Ni-$TiO_2@SiO_2$ ($450^{\circ}C$), the $T_{10%}$ was observed at $365^{\circ}C$ in the first run and at $335^{\circ}C$ in the second run. For the Pd-$TiO_2@SiO_2$ ($450^{\circ}C$), the $T_{10%}$ was observed at a much lower temperature of $263^{\circ}C$ in the first CO oxidation run, and at $247^{\circ}C$ in the second run. The CO oxidation activities of transition metal modified $TiO_2@SiO_2$ core-shell nanostructures presented herein provide new insights that will be useful in developing catalysts for various environments.

Facing targets sputtering system에서 TbFeCo박막의 산화에 미치는 제조조건의 영향 (The effect of deposition condition on the oxidation of TbFeCo thin films in facing targets sputtering system)

  • 문정탁;김명한
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권6호
    • /
    • pp.511-519
    • /
    • 1994
  • The effect of the deposition conditions, such as the base pressure, working pressure, sputtering power, pre-sputtering, and deposition thickness in facing targets sputtering system(FTS), on the oxidation of the TbFeCo thin films was studied by investigating the magneto-optical properties as well as oxygen analysis by the AES depth profiles. The results showed that the base pressure did not affect the magnetic properties so much, probably due to the short flight distance of the sputtered particles. At the higher sputtering power and lower working pressure with pre-sputtering the oxidation of TbFeCo thin films was decreased. As the film thickness increased the TbFeCo thin films showed the perpendicular anisotropy from in-plane anisotropy overcoming the oxidation effect at the beginning of the sputtering.

  • PDF

CO-Tolerant PtMo/C Fuel Cell Catalyst for H2 Oxidation

  • Bang, Jin-Ho;Kim, Ha-Suck
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3660-3665
    • /
    • 2011
  • CO-tolerant PtMo/C alloy electrocatalyst was prepared by a colloidal method, and its electrocatalytic activity toward CO oxidation was investigated. Electrochemical study revealed that the alloy catalyst significantly enhanced catalytic activity toward the electro-oxidation of CO compared to Pt/C counterpart. Cyclic voltammetry suggested that Mo plays an important role in promoting CO electro-oxidation by facilitating the formation of active oxygen species. The effect of Mo on the electronic structure of Pt was investigated using X-ray absorption spectroscopy to elucidate the synergetic effect of alloying. Our in-depth spectroscopic analysis revealed that CO is less strongly adsorbed on PtMo/C catalyst than on Pt/C catalyst due to the modulation of the electronic structure of Pt d-band. Our investigation shows that the enhanced CO electrooxidation in PtMo alloy electrocatalyst is originated from two factors; one comes from the facile formation of active oxygen species, and the other from the weak interaction between Pt and CO.

Study on High-Temperature Oxidation Behaviors of Plasma-Sprayed TiB2-Co Composite Coatings

  • Fadavi, Milad;Baboukani, Amin Rabiei;Edris, Hossein;Salehi, Mahdi
    • 한국세라믹학회지
    • /
    • 제55권2호
    • /
    • pp.178-184
    • /
    • 2018
  • In the present study, $TiB_2-Co$ composite coatings were thermally sprayed onto the surface of a 304 stainless steel substrate using an atmospheric plasma spray (APS). The phase analysis of the powders and plasma-sprayed coatings was performed using X-ray diffractometry analysis. The microstructures of the coatings were studied by a scanning electron microscope (SEM). The average particle size and flowability of the feedstocks were also measured. Both $TiB_2-32Co$ and $TiB_2-45Co$ (wt.%) coatings possessed typical dense lamellar structures and high-quality adhesion to the substrate. The oxidation behaviors of the coatings were studied at $900^{\circ}C$ in an atmospheric environment. In addition, the cross-sectional images of the oxidized coatings were analyzed by SEM. A thin and well-adhered layer was formed on the surface of both $TiB_2-Co$ coatings, confirming satisfactory high-temperature oxidation resistance. The kinetic curves corresponding to the isothermal oxidation of the coatings illustrated a short transient stage from rapid to slow oxidation during the early portion of the oxidation experiment.

Monolith에 담지한 귀금속촉매상에서 CO와 $C_3H_6$의 동시적 산화반응에 관한 연구 (A Study on the Oxidation of CO and $C_3H_6$ over Noble Metal Supported Catalysts on Monolith)

  • 김태원;고형림;김재형;김경림
    • 한국대기환경학회지
    • /
    • 제14권1호
    • /
    • pp.63-72
    • /
    • 1998
  • Simultaneous CO and $C_3H_6$ oxidation was carried out over noble metal supported monolith catalysts in a flow thorugh type reactor at the temperature ranging from room temperature to $500^\circ$C. Pt and Pd were selected as major active species, 10wt% of Ce was impregnated as an additive and alumina and silica were used as supports. The reactant gases were simulated and the reaction products were analyzed by on-line G.C.. EDX, SEM, TGA, XRD and optical microscope were used to analyze the characteristics of the prepared catalysts. Under the given conditions in this study, the catalysts supported on alumina showed better activity for CO oxidation, while Pd catalysts showed better activity for $C_3H_6$ oxidation. The improvement of conversion due to increase in thermal stability possibily by Ce addition was observed only for Pt catalysts.

  • PDF

Study of CO Oxidation on Well-Characterized Pt-Ru/C Electrocatalysts Having Different Composition

  • Min, Myoung-Ki;Kim, Joo-Hoon;Kim, Ha-Suck
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권1호
    • /
    • pp.151-156
    • /
    • 2010
  • In this paper, we characterized bimetallic Pt-Ru/C alloy catalysts having four different compositions and compared the catalytic activities of the prepared alloys for CO oxidation. ICP-AES, EDS, XRD, TEM, and XAS were used to investigate the composition, degree of alloying, particle size, and electronic structure of the prepared Pt-Ru/C catalysts. Those results indicated the synthesis of the alloy catalysts with intended composition and uniform size. The electrochemical study of the characterized alloys showed higher catalytic activity for CO oxidation than that of the commercial Pt/C (E-TEK, Inc., 20 wt %) catalyst. Especially, it was shown that the alloy catalyst with Ru composition of 50 atomic % gave the highest catalytic activity for CO oxidation.

산화촉매에 의한 대형디젤엔진의 배출가스 정화 특성 - Reactor 실험을 중심으로 - (Characteristics of Exhaust Emission Reduction of Heavy Duty Diesel Engine by Oxidation Catalyst - Reactor Test -)

  • 조강래;김용우;김희강
    • 한국대기환경학회지
    • /
    • 제14권4호
    • /
    • pp.313-320
    • /
    • 1998
  • The most desirable diesel oxidation catalyst (DOC) should have the properties of oxidibing CO and HC effectively at low exhaust gas temperature while minimizing the formation of sulfate at high exhaust gas temperature. Precious metals such as platinum and palladium have been known to be sufficiently active for oxidizing CO and HC and also to have high activity for the oxidation of sulfur dioxide (SO2) to sulfor trioxide (SO3). There is a need to develop a highly selective catalyst which can promote the oxidation of CO and HC efficiently, but, on the other hand, suppress the oxidation of SO2. One approach to solve this problem is to load a base metal such as vanadium in Pt-based catalyst to suppress sulfate formation. In this study, a Pt-V catalyst was prepared by impregnating platinum and vanadium onto a Ti-Si wash coated catalyst in a laboratory reactor by changing the formulations and reaction temperatures.

  • PDF

모델시스템에 있어서 무지개 송어 지방질의 산화에 대한 Lipoxygenase의 영향 (Effect of Lipoxygenase on the Oxidation of Rainbow Trout Lipid in Model system)

  • 김혜경;엄수현;최홍식
    • 생명과학회지
    • /
    • 제5권2호
    • /
    • pp.70-75
    • /
    • 1995
  • The effect of lipoxygenase (LOX) on the oxidation and co-oxidation of lipid fraction was studied in the model system of rainbow trout. For the reaction in model system 1 g of lipid fraction and 50mL of enzyme extract(LOX, 140 unit in 50mL phosphate buffer solution at pH 7, 4)), which were obtained from rainbow trout, were homoginized in the presence of Tween 20 and kept at 23$\circ$C for 3 days. The activity of LOX was decreased to 43% of initial level during the reaction in the model system. The initial composition of rainbow trout lipid was showed to be consisted of trigliceride(TG;82%) and free fatty acid(FFA;0.1%), while this converted to 59% of TG and 20% of FIFA, respectively after reaction in model system. Change of fatty acid composition was also observed and the content of linoleic acid, one of the major fatte acids, was decreased to 13% from 54% in the content of total fatty acids after reaction. The carotenoids in rainbow trout were composed of 0.4% $\alpha$-carotene, 1.6% $\beta$ -carotene, 80% canthaxanthin, 7% lutein and 11% zeaxanthin, thus the canthaxanthin was the major component. This canthaxanthin was the most degraded carotenoid by lipoxygenase catalyzed co-oxidation during the reaction. On the other hand the tocopherol isomers found in the rainbow trout were $\alpha$ and $\beta$ -tocopherol, and $\alpha$-tocopherol had a higher degradation rate by the lipoxygenase catalyzed co-oxidation than of $\beta$-tocopherol in the reaction of model system.

  • PDF

자일렌의 기상 산화반응에서의 반응 메카니즘과 담체영향 (Reaction Mechanism and Support Effect for the Gas-Phase Oxidation of o-Xylene)

  • 이근대;이호인
    • 공업화학
    • /
    • 제2권2호
    • /
    • pp.155-164
    • /
    • 1991
  • o-자일렌 산화반응의 반응메카니즘과 촉매활성에 대한 산화바나듐의 산화상태 및 담체의 영향을 연구하였다. o-자일렌의 산화반응은 연계반응 메카니즘 및 병렬반응 메카니즘에 의해 동시에 진행되는 것으로 나타났다. 높은 산화수를 지닌 산화바나듐은 무수프탈산으로의 선택적 산화반응에 유리한 것으로 나타났고, 반면에 낮은 산화수의 경우는 무수프탈산의 CO 및 $CO_2$로의 완전 산화반응을 유발함을 알 수 있었다. 그리고 결정성 $V_2O_5$가 낮은 비결정성의 경우보다 부분 산화반응에 대한 높은 선택도를 나타내었다.

  • PDF

Effect of Electrochemical Oxidation Potential on Biofilter for Bacteriological Oxidation of VOCs to $CO_2$

  • Kang Hye-Sun;Lee Jong-Kwang;Kim Moo-Hoon;Park Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.399-407
    • /
    • 2006
  • In this study, an electrical conductive carbon fiber was used as a biofilter matrix to electrochemically improve the biofilter function. A bioreactor system was composed of carbon fiber (anode), titanium ring, porcelain ring, inorganic nutrient reservoir, and VOC reservoir. Electric DC power of 1.5 volt was charged to the carbon fiber anode (CFA) to induce the electrochemical oxidation potential on the biofilter matrix, but not to the carbon fiber (CF). We tested the effects of electrochemical oxidation potential charged to the CFA on the biofilm structure, the bacterial growth, and the activity for metabolic oxidation of VOCs to $CO_2$, According to the SEM image, the biofilm structure developed in the CFA appeared to be greatly different from that in the CF. The bacterial growth, VOCs degradation, and metabolic oxidation of VOCs to $CO_2$ in the CFA were more activated than those in the CF. On the basis of these results, we propose that the biofilm structure can be improved, and the bacterial growth and the bacterial oxidation activity of VOCs can be activated by the electrochemical oxidation potential charged to a biofilter matrix.