• Title/Summary/Keyword: overwintering density

Search Result 32, Processing Time 0.019 seconds

Study on the Bonomics of Overwintering Small Brown Planthopper, Laodelphax striatellus Falen, in Milyang (밀양에서 월동 애멸구 (Laodelphax striatellus)의 개체군 생태에 관한 연구)

  • 배순도;송유한;박경배
    • Korean journal of applied entomology
    • /
    • v.34 no.4
    • /
    • pp.321-327
    • /
    • 1995
  • This study was conducted to determine the winter ecology of the small brown planthopper (SBPH), laodelphax striatellus Fallen, in Milyang, east Kyungsangnamdo province. The age distribution in the overwintering SBPH population varied according to collection dates. In early December, the population distribution was 60% 4th instar, 30% 3rd instar, 6% 5th instar, 3.4% 2nd instar with very few adults and 1st instar. In early March 5th instars had the highest propotion (47-50%) with 4th instar 44-46%. In early April the adult population was 75-81% of the population. The averaged nymphal instar converted the age distribution of he overwintering SBPH in to the into the numerical values tended to increase continuously. However, there were some differences in the averaged nymphal instar of overwintering SBPH annually and these differences resulted from different age distribution of the overwintering SBPH due to different annual temperature fluctuations during overwitering periods. The weight of the overwintering SBPH increased continuously during overwintering periods. The collection density of the overwintering SBPH population was significantly higher on the levee than in the barley field. Percent nymphal parasitism by haplogonatopus atratus in the overwintering SBPH population averaged about 21% regardless of overwintering years.

  • PDF

Study on Seasonal Occurrence of Apple Mites, Panonychus ulmi (Koch) and Tetranychus urticae (Koch), in Kyungpook Apple Orchards (경북지방에 있어서 사과나무응애류의 발생생태에 관한 연구)

  • 박소득;정기채;추연대;박선도;최대웅;윤재탁
    • Korean journal of applied entomology
    • /
    • v.29 no.1
    • /
    • pp.20-24
    • /
    • 1990
  • Studies were carried out to investigate the overwintering densities of spider mites, hatching rate and time of P. ulmi eggs, and seasonal occurrences of spider mites (P. ulmi and T. urticae) in apple orchards of Kyungpook province from 1987 to 1989. Overwintering density of P. ulmi eggs was higher in Kunwi, Andong, Chilgok but lower in Kyungju. Overovintering densities of T. urticae were high in all the regions. With the hatching time and rate for P. ulmi eggs, the first hatching ate was April 14, and the last was May 3, and the average hatching rate was 89.3%. The density of P. ulmi was high from early May to middle July and T. urticae begin to increase rapidly from middle June and then was continuously high upto fruit harvesting time.

  • PDF

Overwintering Site and Occurrence Dynamics of Scrobipalpa salinella (Zeller) (Lepidoptera: Gelechiidae) (퉁퉁마디뿔나방 월동 서식처와 발생동태)

  • Paik, Chae-Hoon;Lee, Geon-Hwi;Choi, Man-Young;Noh, Tae-Hwan;Shim, Hyeong-Kwon
    • Korean journal of applied entomology
    • /
    • v.52 no.2
    • /
    • pp.71-74
    • /
    • 2013
  • The moving period and overwinteing site of Scrobipalpa salinella (Zeller) were investigated in Gimje, Jeonbuk, and Shinan, Jeonnam in the glasswort field. Densities of Scrobipalpa salinella larvae were started to increase from mid-September in halophytes, such as Suaeda asparagoides, S. japonica, and S. maritima, rather than glasswort. S. salinella was overwintering inside the halophytes in old larva. Density ratio of overwintering S. salinella in Suaeda asparagoides, S. japonica, and S. maritima were 20.5, 28.4 and 51.1%, respectively. Overwintering population was highest in S. maritima among halophytes. The occurrence of first adult in the next spring was from April 19 to April 20 in Gimje, Jeonbuk, and Shinan, Jeonnam.

Occurrence of and Damage by the Oriental Fruit Moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae) in Pear Orchards (배나무에서 복숭아순나방의 발생과 피해)

  • 양창열;한경식;부경생
    • Korean journal of applied entomology
    • /
    • v.40 no.2
    • /
    • pp.117-123
    • /
    • 2001
  • The occurrence and damage by the oriental fruit moth, Grapholita molesta (Busck) were investigated on pear trees from 1996 to 2000 in the Naju, Korea. The number of overwintering larvae in pear trees considerably varied depending on the maturation time of varieties. The density of overwintering larvae on late cultivars such as Gamcheonbae and Okusankichi was high, but relatively low on early cultivars. Trunk and main branch of pear trees were main overwintering sites. In 1997, overwintering larvae began to pupate from middle February, and to emerge from late March. Male moths were caught in the sex pheromone traps from late March until early October with four peaks of flight in 1996~2000. In every generation larvae damaged both the shoots and fruits of pear tree, but the first and second generation larvae tended to damage mainly shoots, while most of the injured fruits were due to the third and fourth generation larvae. In pear fruits damaged by fruit moths, most of these were caused by oriental fruit moth larvae and none of pear fruits were damaged by peach fruit moth or pear fruit moth larvae in 1998~2000.

  • PDF

Overwintering pattern of larvae of Chilo suppressalis Walker in the bioenergy crop Miscanthus sacchariflorus cv. Geodae 1 (바이오에너지작물 거대억새 가해 해충 이화명나방 유충 월동양상)

  • An, Gi Hong;Yang, Jungwoo;Jang, Yun-Hui;Um, Kyoung Ran;Kim, Seok;Cha, Young-Lok;Yoon, Young-Mi;Moon, Youn-Ho;Ahn, Joung Woong;Yu, Gyeong-Dan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.369-374
    • /
    • 2014
  • The rice stem borer (Chilo suppressalis Walker) was one of the most destructive pest of rice for the 1960s and 1970s in Korea. Recently, it is newly recognized as a potential risk factor to the biomass yield of bioenergy crops. The current research was firstly conducted to investigate overwintering larvae population density and pattern of rice stem borer attacking Miscanthus sacchariflorus cv. Geodae 1 which is referred to as an ideal lignocellulosic bioenergy crop in Korea. Population density of larvae per $1m^2$ in stems and rhizomes at the Miscanthus experimental plots and rates of damage (wormhole, abscission) of M. sacchariflorus cv. Goedae 1 were investigated from October 2012 to March 2013. The population of larvae per $1m^2$ in stems of Miscanthus were 23, 4, 1, and 1 in October, November, December 2012, and January 2013, respectively. Over the same period, the population of larvae in basal stem rots and rhizomes were increased, whereas decreased in stems. Interestingly, the positions of larvae for overwintering in Miscanthus were confirmed to 5~10 cm below the soil surface such as basal stem rot and rhizome, whereas the most common overwintering position known in rice is a part of stem on the ground such as rice straw and rice stubble. It would suggest that the larvae gradually moved to bottom of stems and rhizomes in soil in line with decline in temperature. Moreover, the damage rates of stems per $1m^2$ were up to more than 50% in some places. In conclusion, this might be the first report that rice stem borer could affect the productivity of biomass of Miscanthus in case of mass cultivation. Moreover, it should be necessary to make a decision in insect control management for this bioenergy feedstock and other related crops.

Distribution Characteristics and Overwintering of Golden apple snails, Pomacea canaliculata (Gastropoda:Ampullariidae) at the Environment-friendly complex in Korea (한국 친환경농업단지의 왕우렁이 월동 및 분포특성)

  • Shin, I-Chan;Byeon, Young-Woong;Lee, Byung-Mo;Kim, Jurry;Yoon, Hyun-Jo;Yoon, Ji-Young;Lee, Young-Mi;Han, Eun-Jung;Park, Sang-Gu;Kuk, Yong-In;Choi, Duck-Soo;Cho, Il Kyu;Hong, Sung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.279-289
    • /
    • 2021
  • BACKGROUND: Recently, the golden apple snail, Pomacea canaliculata has been used as an environmentally-friendly weed-control agent in rice farming. Although effective for this particular style of farming, P. canaliculata can be destructive to other crops. The objective of this study was to identify overwintering as well as regional and seasonal distribution characteristics of P. canaliculata. Notably, winter is typically fatal for P. canaliculata. However, owing to increasing average global temperatures, we assessed the ability of P. canaliculata to survive through uncharacteristically warm winters. METHODS AND RESULTS: To examine the distribution and overwintering regions of P. canaliculata, We conducted a survey from April 2020 to May 2021 on environmentally-friendly rice fields, agricultural waterways, and streams in 23 cities belonging to 8 provinces. In addition, because air temperature may influence the distribution density of P. canaliculata, we analyzed the winter temperature data (http://weather.rda.go.kr). CONCLUSION(S): In 2021, overwintering of P. canaliculata (1-3 individuals/m2) was observed in the Goheung and Yeongam regions in Jeonnam. Overwintering of P. canaliculata was observed in fewer regions in 2021 than in 2020; this fact may be attributed to the lower minimum temperatures measured in 2021 (approximately 8℃ lower) than those in 2020. Our results suggest that overwintering occurs as long as overnight temperatures are ≥ -15℃, but can take place if temperatures are as low as -19℃.

Identification and Ecological Characteristics of Bacterial Blossom Blight Pathogen of Kiwifruit (참다래 꽃썩음병균의 동정 및 발생생태)

  • Shin, Jong-Sup;Park, Jong-Kyu;Kim, Gyoung-Hee;Park, Jae-Young;Han, Hyo-Shim;Jung, Jae-Sung;Hur, Jae-Seoun;Koh, Young-Jin
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.290-296
    • /
    • 2004
  • Bacterial blossom blight is one of the most important diseases of kiwifruit (Actinidia deliciosa). The disease occurs during flowering in the late May and disease outbreaks associated with rainfall during the flowering season have resulted in a severe reduction in kiwifruit production. The causal organism isolated from diseased blossoms of kiwifruits was identified as Pseudomonas syringae pv, syringae based on the physiological and biochemical characteristics and pathogenicity test. Dead fruit stalks, dead pruned twigs, fallen leaves and soils mainly provided R syringae pv. syringae with overwintering places in the kiwifruit orchards, and the inocula also overwintered on buds, trunks, branches, and twigs on the kiwifruit trees. Among the overwintering places, the incula were detected in the highest frequencies from dead fruit stalks. The population density of P. syringae pv. syringae was speculated to be over $1{\times}10^4$cfu/ml for the bacterial infection, and the optimum temperature for the bacterial growth ranged 20 to $25^{\circ}C$. The highest population density of P. syringae pv. syringae on the overwintering places was detected in May and June when the daily average temperature coincided with the optimum temperature for bacterial growth of P. syringae pv. syringae.

Development of Western Cherry Fruit Fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), after Overwintering in the Pacific North West Area of USA (미국 북서부지역에 발생하는 서부양벚과실파리의 발생 월동 후 발생 동태에 관한 연구)

  • Song, Yoo-Han;Ahn, Kwang-Bok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.217-227
    • /
    • 2007
  • The western cherry fruit fly, Rhagoletis indifferens Curran (Diptera:Tephritidae), is the most important pest of cultivated cherries in the Pacific Northwest area of the United States, being widely distributed throughout Oregon, Washington, Montana, Utah, Idaho, Colorado and parts of Nevada. The control of R. indifferens has been based on calendar sprays after its first emergence because of their zero tolerance for quarantine. Therefore, a good prediction model is needed for the spray timing. This study was conducted to obtain the empirical population dynamic information of R. indifferens after overwintering in the major cherry growing area of the Pacific Northwest of the United States, where the information is critically needed to develop and validate the prediction model of the fruit fly. Adult fly populations were monitored by using yellow sticky and emergence traps. Larvae growth and density in fruits were observed by fruit sampling and the pupal growth and density were monitored by pupal collection traps. The first adult was emerged around mid May and a large number of adults were caught in early June. A fruit had more than one larva from mid June to early July. A large number of pupae were caught in early July. The pupae were collected in various period of time to determine the effect of pupation timing and the soil moisture content during the winter. A series of population density data collected in each of the developmental stage were analyzed and organized to provide more reliable validation information for the population dynamic models.

Density and Viability of Sclerotia of Rice Sheath Blight Pathogen Overwintering in Field (벼잎집무늬마름병균(病菌) 월동균핵(越冬菌核)의 밀도(密度)와 활성(活性))

  • Kim, Choong-Hoe;Kim, Chang-Kyu
    • Korean journal of applied entomology
    • /
    • v.26 no.2 s.71
    • /
    • pp.99-106
    • /
    • 1987
  • Three post-harvest fields each in four rice growing areas, Iri, Naju, Jinju and Taegu were randomly selected and surveyed during December 1986 to examine sclerotial density of Rhizoctonia solani overwintering in the field. Surface soil of $0.09m^2$ area was sampled in each field with three replications and sieved to collect sclerotia. Germiability and pathogenicity of collected sclerotia were examined in the laboratory. Number of sclerotia $({\times}10^6)/ha$ in Iri, Naju, Jinju, and Taegu was estimated from the sample as 2.7, 1.2, 0.7 and 0.6, respectively. Based on sample variance with simple random sampling in each area, number of sampling required for estimating average sclerotial density with the precision of 10% apart from a chance of 1 in 20 was calculated to 41, 132, 232, and 395 for Iri, Naju, Jinju and Taegu, respectively. Percentage of germination of sampled sclerotia on potato sucrose agar (PSA) ranged from 42 to 78% depending on the area, and averaged 60%. About 49% of the germinated sclerotia were pathogenic to a rice cultivar Jinheung that was used to test pathogenicity of the sclerotia. Proportion of viable sclerotia that have both germiability and pathogenicity was thus estimated to 0.29 of total sclerotia collected. R. solani cultures obtained from the sclerotia could be distinguished into three groups based on colony morphology on PSA. Size and number of sclerotia formed on PSA differed between group but were not associated with pathogenicity to Jinheung.

  • PDF

Seasonal Occurrence and Age Structure of Paromius exiguus (Distant) (Heteroptera: Lygaeidae) on Major Host Plants (흑다리긴노린재[Paromius exiguus (Distant)](Heteroptera: Lygaeidae)의 발생소장과 주요 기주에서 시기별 연령분포)

  • Park, Chang-Gyu;Park, Hong-Hyun;Uhm, Ki-Baik;Lee, Joon-Ho
    • Korean journal of applied entomology
    • /
    • v.48 no.1
    • /
    • pp.21-27
    • /
    • 2009
  • Paromius exiguus (Distant) has caused serious damage by pecky grains around Gimpo paddy fields in 2001. We conducted field and laboratory studies to determine the seasonal occurrence and age distribution of P. exiguus on the three major host plants. The overwintering P. exiguus was found mainly on the basal part of gramineae weeds in various localities. After overwintering, in mid-May, the adults aggregated on the grain parts of Imperata cylindrica, laid their eggs and nymphs developed into adults on the same host plants. By the time, the Calamagrostis epigeios colony had newly occupied I. cylindrica areas, the nymphs and adults of first generation had already moved to the second host. The second generation of P. exiguus, after having completed its life cycle on C. epigeios, the newly emerged adults migrated to the rice plants and other gramineae weeds in early August. Afterwards, they complete its third generation cycle where they can move to the overwintering site again. P. exiguus has the five nymphal stages and each nymphal stage could be determined by head or prothoracic width. On the I. cylindrica and O. sativa hosts, the age distribution of P. exiguus showed a simple structure as each stage ratio increased stepwise with time. But in case of C. epigeios, as the newly emerged adults and immature nymphs continuously migrate after a month from the I. cylindrica, the age structure became remarkably complex. The peak nymphal density was observed when the ratio of third and forth instar was the highest in the population. The finding about the specific age structure on each generation of the insect would be very useful in control decision making on the major host plants. It is also important to consider the host's specificity to pesticide sensitivity in relation to various nymphal stages.