• 제목/요약/키워드: overlap of time

Search Result 332, Processing Time 0.025 seconds

High Quality Multi-Channel Audio System for Karaoke Using DSP (DSP를 이용한 가라오케용 고음질 멀티채널 오디오 시스템)

  • Kim, Tae-Hoon;Park, Yang-Su;Shin, Kyung-Chul;Park, Jong-In;Moon, Tae-Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • This paper deals with the realization of multi-channel live karaoke. In this study, 6-channel MP3 decoding and tempo/key scaling was operated in real time by using the TMS320C6713 DSP, which is 32 bit floating-point DSP made by TI Co. The 6 channel consists of front L/R instrument, rear L/R instrument, melody, and woofer. In case of the 4 channel, rear L/R instrument can be replaced with drum L/R channel. And the final output data is generated as adjusted to a 5.1 channel speaker. The SOLA algorithm was applied for tempo scaling, and key scaling was done with interpolation and decimation in the time domain. Drum channel was excluded in key scaling by separating instruments into drums and non-drums, and in processing SOLA, high-quality tempo scaling was made possible by differentiating SOLA frame size, which was optimized for real-time process. The use of 6 channels allows the composition of various channels, and the multi-channel audio system of this study can be effectively applied at any place where live music is needed.

A Study on Super Resolution Algorithm to Improve Spatial Resolution of Optical Signals (광신호의 공간 해상도 향상을 위한 초 분해능 알고리즘 연구)

  • Lee, Byung-Jin;Yu, Bong-Guk;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.71-77
    • /
    • 2018
  • The optical time domain reflectometer (OTDR) is the most widely used method to monitor problems with currently installed optical fibers. The OTDR is an instrument designed to test the FTTx network and evaluates the physical properties of the fiber, such as transmission loss and connection loss. It is important to improve the spatial resolution in order to accurately grasp the optical path problems by using the OTDR. When the pulse width is less than twice the distance between the two reflectors, the signals reflected from the two reflectors are reflected without overlap, so that the reflected signal can be distinguished. However, when the pulse width is larger than twice the distance between the two reflectors, so that the reflected signal can not be distinguished. In order to overcome these limitations, this paper proposed a method of improving spatial resolution by applying a super resolution algorithm. As a result of the simulation, the resolution is improved when the super resolution algorithm is applied, and the event interval can be analyzed more precisely.

Thickness Measurement by Using Cepstrum Ultrasonic Signal Processing (켑스트럼 초음파 신호 처리를 이용한 두께 측정)

  • Choi, Young-Chul;Park, Jong-Sun;Yoon, Chan-Hoon;Choi, Heui-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.290-298
    • /
    • 2014
  • Ultrasonic thickness measurement is a non-destructive method to measure the local thickness of a solid element, based on the time taken for an ultrasound wave to return to the surface. When an element is very thin, it is difficult to measure thickness with the conventional ultrasonic thickness method. This is because the method measures the time delay by using the peak of a pulse, and the pulses overlap. To solve this problem, we propose a method for measuring thickness by using the power cepstrum and the minimum variance cepstrum. Because the cepstrums processing can divides the ultrasound into an impulse train and transfer function, where the period of the impulse train is the traversal time, the thickness can be measured exactly. To verify the proposed method, we performed experiments with steel and, acrylic plates of variable thickness. The conventional method is not able to estimate the thickness, because of the overlapping pulses. However, the cepstrum ultrasonic signal processing that divides a pulse into an impulse and a transfer function can measure the thickness exactly.

Determination of optimal parameters for perforated plates with quasi-triangular cutout by PSO

  • Jafari, Mohammad;Hoseyni, Seyed A. Mahmodzade;Chaleshtari, Mohammad H. Bayati
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.795-807
    • /
    • 2016
  • This study tries to examine the effect of different parameters on stress analysis of infinite plates with central quasi-triangular cutout using particle swarm optimization (PSO) algorithm and also an attempt has been made to introduce general optimum parameters in order to achieve the minimum amount of stress concentration around this type of cutout on isotropic and orthotropic plates. Basis of the presented method is expansion of analytical method conducted by Lekhnitskii for circular and elliptical cutouts. Design variables in this study include fiber angle, load angle, curvature radius of the corner of the cutout, rotation angle of the cutout and at last material of the plate. Also, diagrams of convergence and duration time of the desired problem are compared with Simulated Annealing algorithm. Conducted comparison is indicative of appropriateness of this method in optimization of the plates. Finite element numerical solution is employed to examine the results of present analytical solution. Overlap of the results of the two methods confirms the validity of the presented solution. Results show that by selecting the aforementioned parameters properly, less amounts of stress can be achieved around the cutout leading to an increase in load-bearing capacity of the structure.

Improvement of inspection system for common crossings by track side monitoring and prognostics

  • Sysyn, Mykola;Nabochenko, Olga;Kovalchuk, Vitalii;Gruen, Dimitri;Pentsak, Andriy
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.219-235
    • /
    • 2019
  • Scheduled inspections of common crossings are one of the main cost drivers of railway maintenance. Prognostics and health management (PHM) approach and modern monitoring means offer many possibilities in the optimization of inspections and maintenance. The present paper deals with data driven prognosis of the common crossing remaining useful life (RUL) that is based on an inertial monitoring system. The problem of scheduled inspections system for common crossings is outlined and analysed. The proposed analysis of inertial signals with the maximal overlap discrete wavelet packet transform (MODWPT) and Shannon entropy (SE) estimates enable to extract the spectral features. The relevant features for the acceleration components are selected with application of Lasso (Least absolute shrinkage and selection operator) regularization. The features are fused with time domain information about the longitudinal position of wheels impact and train velocities by multivariate regression. The fused structural health (SH) indicator has a significant correlation to the lifetime of crossing. The RUL prognosis is performed on the linear degradation stochastic model with recursive Bayesian update. Prognosis testing metrics show the promising results for common crossing inspection scheduling improvement.

A Study on the Conditions of Apparel Products of Stretch Material(I) (스트레치소재(素材) 의류제품(衣類製品)의 생산실태(生産實態) 硏究(I))

  • Park, Jin-Young;Sohn, Hee-Soon
    • Journal of Fashion Business
    • /
    • v.1 no.3
    • /
    • pp.35-44
    • /
    • 1997
  • The purpose of this study is to the processes and quality of local women's apparel production using the stretch fabric and to address the problems related to production in order to provide useful data for producing competitive apparels. The result of the survey can be summarized as follows; 1. Results of surveying the process for raw materials and notions indicated that most of the workers were ignorant of the properties of stretch fabrics. And most factories were stacking the stretch fabrics across improperly, while being aware of the properties of the fabrics through their experiences or in-company test. 2. The major problem involving spreading fabrics was the uneven tension, followed by static electricity, overlap and warp twist. The problems involving the cutting work were melting of the fabric by cutter and difference of size between upper and lower parts. 3. Most of the businesses were not tempering the fabric before and after its linking works due to lack of working space, short delivery time, ignorance and etc. The majority of the sample businesses were operating their cutters at the speed of 3,000 rpm or higher, which suggests a poor technological guidance.

  • PDF

Development of a 3D Virtual Costume Using Geometric Formativeness (기하학적 조형성을 이용한 3D 가상의상 개발)

  • Xu Yi;Minji Kim
    • Journal of Fashion Business
    • /
    • v.27 no.3
    • /
    • pp.115-131
    • /
    • 2023
  • The revolution of digital fashion continues along with the development of technology. In particular, after COVID-19, fashion design development, exhibitions, and fashion shows using the metaverse space are being actively developed. In particular, as research on 3D virtual costumes becomes active, creative ideas are needed to develop creative virtual costumes. The purpose of this study is to examine the geometric formative characteristics of constructivism in art and fashion design and to develop 3D virtual works using them. Geometric form is a logical and rational basic form that includes the order of nature as an artistic material that has been constantly studied along with the creation of mankind a long time ago, and it has become a motif of many artworks and fashion. In this paper, we studied the application of the costume design of geometric shapes according to the 3D Clo, virtual-wear production software, and understood the effect of the combination of geometric shapes on costume styling. As the formative characteristics of constructivist art, three types of overlap, asymmetry, and simplicity were derived, and the geometric form was visually simple, clear, and concise. The first work produced virtual costumes that reflected the overlapping elements of constructivism. The second costume was produced by reflecting the asymmetric formative characteristics of constructivism. The third costume was a jacket that applied the simplicity of constructivist art.

Outlier Detection Based on Discrete Wavelet Transform with Application to Saudi Stock Market Closed Price Series

  • RASHEDI, Khudhayr A.;ISMAIL, Mohd T.;WADI, S. Al;SERROUKH, Abdeslam
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.1-10
    • /
    • 2020
  • This study investigates the problem of outlier detection based on discrete wavelet transform in the context of time series data where the identification and treatment of outliers constitute an important component. An outlier is defined as a data point that deviates so much from the rest of observations within a data sample. In this work we focus on the application of the traditional method suggested by Tukey (1977) for detecting outliers in the closed price series of the Saudi Arabia stock market (Tadawul) between Oct. 2011 and Dec. 2019. The method is applied to the details obtained from the MODWT (Maximal-Overlap Discrete Wavelet Transform) of the original series. The result show that the suggested methodology was successful in detecting all of the outliers in the series. The findings of this study suggest that we can model and forecast the volatility of returns from the reconstructed series without outliers using GARCH models. The estimated GARCH volatility model was compared to other asymmetric GARCH models using standard forecast error metrics. It is found that the performance of the standard GARCH model were as good as that of the gjrGARCH model over the out-of-sample forecasts for returns among other GARCH specifications.

Functional characterization of Clonorchis sinensis choline transporter

  • Jeong Yeon Won;Johnsy Mary Louis;Eui Sun Roh;Seok Ho Cha;Jin-Hee Han
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.4
    • /
    • pp.428-438
    • /
    • 2023
  • Clonorchis sinensis is commonly found in East Asian countries. Clonorchiasis is prevalent in these countries and can lead to various clinical symptoms. In this study, we used overlap extension polymerase chain reaction (PCR) and the Xenopus laevis oocyte expression system to isolate a cDNA encoding the choline transporter of C. sinensis (CsChT). We subsequently characterized recombinant CsChT. Expression of CsChT in X. laevis oocytes enabled efficient transport of radiolabeled choline, with no detectable uptake of arginine, α-ketoglutarate, p-aminohippurate, taurocholate, and estrone sulfate. Influx and efflux experiments showed that CsChT-mediated choline uptake was time- and sodium-dependent, with no exchange properties. Concentration-dependent analyses of revealed saturable kinetics consistent with the Michaelis-Menten equation, while nonlinear regression analyses revealed a Km value of 8.3 µM and a Vmax of 61.0 pmol/oocyte/h. These findings contribute to widen our understanding of CsChT transport properties and the cascade of choline metabolisms within C. sinensis.

Fast Quadtree Based Normalized Cross Correlation Method for Fractal Video Compression using FFT

  • Chaudhari, R.E.;Dhok, S.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.519-528
    • /
    • 2016
  • In order to achieve fast computational speed with good visual quality of output video, we propose a frequency domain based new fractal video compression scheme. Normalized cross correlation is used to find the structural self similar domain block for the input range block. To increase the searching speed, cross correlation is implemented in the frequency domain using FFT with one computational operation for all the domain blocks instead of individual block wise calculations. The encoding time is further minimized by applying rotation and reflection DFT properties to the IFFT of zero padded range blocks. The energy of overlap small size domain blocks is pre-computed for the entire reference frame and retaining the energies of the overlapped search window portion of previous adjacent block. Quadtree decompositions are obtained by using domain block motion compensated prediction error as a threshold to control the further partitions of the block. It provides a better level of adaption to the scene contents than fixed block size approach. The result shows that, on average, the proposed method can raise the encoding speed by 48.8 % and 90 % higher than NHEXS and CPM/NCIM algorithms respectively. The compression ratio and PSNR of the proposed method is increased by 15.41 and 0.89 dB higher than that of NHEXS on average. For low bit rate videos, the proposed algorithm achieve the high compression ratio above 120 with more than 31 dB PSNR.