• Title/Summary/Keyword: overland flow

Search Result 75, Processing Time 0.028 seconds

Investigating Ephemeral Gully Erosion Heads Due To Overland Flow Concentration in Nonpoint Source Pollution Control (비점오염원 관리에서 지표수 집중화로 인한 구강 침식점 조사 방법 연구)

  • Kim, Ik-Jae;Son, Kyong-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.454-458
    • /
    • 2007
  • Nonpoint source (NPS) pollution is a serious problem causing the degradation of soil and water quality. Concentrated overland flow is the primary transport mechanism for a large amount of NPS pollutants from hillslope areas to downslope areas in a watershed. In this study, a soil erosion model, nLS model, to identify transitional overland flow regions (i.e., ephemeral gully head areas) was developed using the kinematic wave overland flow theory. Spatial data, including digital elevation models (DEMs), soil, and landcover, were used in the GIS-based model algorithm. The model was calibrated and validated using gully head locations in a large agricultural watershed, which were identified using 1-m aerial photography. The model performance was better than two previous approaches; the overall accuracy of the nLS model was 72 % to 87 % in one calibration subwatershed and the mean overall accuracy was 75 to 89 % in four validation subwatersheds, showing that the model well predicted potential transitional erosion areas at different watersheds. However, the user accuracy in calibration and validation was still low. To improve the user accuracy and study the effects of DEM resolution, finer resolution DEMs may be preferred because DEM grid is strongly sensitive to estimating model parameters. Information gained from this study can improve assessing soil erosion process due to concentrated overland flow as well as analyze the effect of microtopographic landscapes, such as riparian buffer areas, in NPS control.

  • PDF

Urban Inundation Analysis by Applying with GIS (GIS를 이용한 도시지역 침수해석)

  • Lee, Chang-Hee;Han, Kun-Yeun;Kim, Ji-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.115-126
    • /
    • 2006
  • The purpose of this study is to develop an urban inundation model using GIS(geographic information system). The model is combining a storm sewer system model and a overland-flow model for the estimation inundation depth in urban area caused by the surcharge of storm sewers. SWMM(storm water management model) was employed to resolve the storm sewer flow and to provide the overflow hydrographs caused by the failure of a drainage system due to the shortage of drainage capacity. The level-pool overland-flow model and DEM based overland-flow model were used to calculate the detail inundation zones and depths due to the surcharge on overland surface. The simulation results can help the decision preventing flood damages by redesigning and enlarging the capacities of storm sewer systems in the inundation-prone areas. The model can also be applied to make the potential inundation area map and establish flood-mitigation measures as a part of the decision support system for flood control authority.

  • PDF

The assessment of the contribution of overland flow to basin response by means of hydrological approach (수문학적 접근법에 의한 유역응답내 지표면유동의 기여도 평가)

  • Kim Joo-Cheol;Yoon Yeo-Jin;Kim Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.7 s.168
    • /
    • pp.553-562
    • /
    • 2006
  • The relative contributions of overland-flow and stream-flow to the response process at the basin scale are evaluated in the present study. The moments of GIUH models were applied to the data of the Bocheong watershed in the Geum river basin in Korea in order to discuss the feasibility. The GIUH model derived in this study consists of the stream path and overland region. The characteristic velocities for the flows between two cases mentioned above make a clear distinction as expected and would have more physical meaning than the ones of the model by Rodriguez-Iturbe and Valdes(1979). The path lengths of overland for each stream order are nearly constant, whereas the case of stream is shown to grow larger according to the basin sizes. As a result, the overall basin response process was founded out to be greatly under the influence of the hydrodynamic behavior of overland, and its behavior is suggested to be further researched for catching the broader meanings.

Development of a Kinematic Wave Model to Route Overland Flow in Vegetated Area (II) -Runoff Plot Experiments and Model Application- (초지의 지표면 흐름을 추적하기 위한 Kinematic Wave Model의 개발(II) - 포장실험과 모형의 응용 -)

  • ;W.L.Magette
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.74-80
    • /
    • 1993
  • Runoff simulation tests to investigate the flow mechanics of nonsuomerged overland flow in a natural grass intervening land system were condueted and a modified kinematic wave overland runoff model developed by Choi et al. (1993) was verified. Nonhomogeneity and heterogeneity of the soil, slope, local topography, infiltration, grass density, and the density and activity of the soil microhes and wild animals were the major factors affecting the flow. Streamlines were disturbed by grass stems and small concentrated flows due to the disturbed streamlines and local topography were observed a lot. Relatively larger concentrated flows were observed where bundles of grass were dominant than where individual grasses were growing. Predicted hydrographs were agreed verv well with measured hydrographs. Since the modified model considers grass density in computing flow depth and hydraulic radius, it can be better than existing kinematic wave model if it were used to route nonpoint source pollutant attenuation processes in many grass intervening land systems.

  • PDF

Development and Application of Grid-Based Urban Surface Runoff Model (격자기반의 도시유역 지표면 유출모형의 개발 및 적용)

  • Kim, Mun-Mo;Lee, Jeong-Woo;Yi, Jae-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.25-38
    • /
    • 2007
  • A grid-based urban surface runoff model for simulating the temporal variation and spatial distribution of overland flow in a drainage area was developed. The process of routing of overland flow is modeled by the nonlinear storage equation which is composed of the continuity equation and the Manning's equation. For model operation, the drainage area is divided into grid areas, and spatially distributed topographical and hydrological information for model inputs is provided. Then overland flow is routed for each of the discretized cells of the area. In order to test the applicability of this model, temporal variations and spatial distributions of flow depth and overland flow was simulated in a fictitious and a real urbanized Kunja drainage area. Results indicate that the model can simulate reasonably well the urban runoff hydrograph.

Numerical Investigation of Countermeasure Effects on Overland Flow Hydrodynamic and Force Mitigation in Coastal Communities

  • Hai Van Dang;Sungwon Shin;Eunju Lee;Hyoungsu Park;Jun-Nyeong Park
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.364-379
    • /
    • 2022
  • Coastal communities have been vulnerable to extreme coastal flooding induced by hurricanes and tsunamis. Many studies solely focused on the overland flow hydrodynamic and loading mechanisms on individual inland structures or buildings. Only a few studies have investigated the effects of flooding mitigation measures to protect the coastal communities represented through a complex series of building arrays. This study numerically examined the performance of flood-mitigation measures from tsunami-like wave-induced overland flows. A computational fluid dynamic model was utilized to investigate the performance of mitigation structures such as submerged breakwaters and seawalls in reducing resultant forces on a series of building arrays. This study considered the effects of incident wave heights and four geometrically structural factors: the freeboard, crest width of submerged breakwaters, and the height and location of seawalls. The results showed that prevention structures reduced inundation flow depths, velocities, and maximum forces in the inland environment. The results also indicated that increasing the seawall height or reducing the freeboard of a submerged breakwater significantly reduces the maximum horizontal forces, especially in the first row of buildings. However, installing a low-lying seawall closer to the building rows amplifies the maximum forces compared to the original seawall at the shoreline.

Time of Concentration on Impervious Overland (불투수층 사면에서의 도달시간)

  • Yu, Dong-Hun;Jeon, U-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.195-205
    • /
    • 2000
  • Many types of factors were devised to calculate time of concentration. Singh(976) derived time of concentration of overland flow using kinematic wave theory for plane, converging, and diverging geometric configurations. The present paper investigated the time of concentration for particularly plane geometric configuration. A theoretical equation of time of concentration is derived based on the assumption of impervious overland flow as in the open channel flow. The study characterized the overland flow by many types of characteristic flow such as rough turbulent flow, smooth turbulent flow, laminar flow, and then suggested a theoretical equation on each flow condition. The present paper further considered the rainfall intensity as a main factor and devised an approximate composite equation reflecting the effect of rainfall intensity given at various return periods.

  • PDF

Evaluation on the Landslide Stability Triggered by Rainfall (강우로 인한 사면활동의 안정성 평가)

  • Sagong Myung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1101-1106
    • /
    • 2004
  • Rainfall induced landslides are disasters causing sever damage on the human life and the infrastructures. In this paper, a simplified procedure to evaluate the slope stability problems induced by rainfall by modifying the Iverson's pressure head dispersion model. The proposed approach extends the applicability of the Iverson's model in to the cases of higher rainfall intensity than the permeability of the soil by incorporating the existence of overland flow. In addition, the Manning equation is applied to calculated the depth of overland flow. From the calculated depth of overland flow, shear stress acting on the surface is included for the driving component triggering the landslides. From the analysis of a case study, the long term rainfall alters the stability of slope.

  • PDF

Simulation of Moving Storm in a Watershed Using A Distributed Model -Model Development- (분포형 모델을 이용한 유역내 이동강우(MOVING STORM)의 유출해석(1) -모델의 개발-)

  • Choe, Gye-Won;Lee, Hui-Seong;An, Sang-Jin
    • Water for future
    • /
    • v.25 no.1
    • /
    • pp.101-110
    • /
    • 1992
  • In this paper for simulating spatially and temporally varied moving storm in a watershed a distributed model was developed. The model is conducted by two major flow simulations which overland flow simulation and channel network flow simulation. Two dimensional continuity equation and momentum equation of kinematic approximation are used in the overland flow simulation. On the other hand, in the channel networks simulation two types of governing equations which are one dimensional continuity and momentum equations between two adjacent sections in a channel, and continuity and energy equations at a channel junction are applied. The finite element formulations were used in the overland flow simulation and the implicit finite difference formulations were used in the channel network simulation. The finite element formulations for the overland flow are analyzed by the Gauss elimination method and the finite difference formulations for the channel network flow are analyzed by the double sweep method having advantages of computational speed and reduced computer storages. Several recurrent coefficient equations for channel network simulation are suggested in the paper.

  • PDF

Effect of Farming Practices on Water Quality

  • 최중배;최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.E
    • /
    • pp.63-71
    • /
    • 1995
  • Three types of land use were investigated to describe the effect of land use on both surface and ground water quality. Typical land uses of a grazing pasture, Sudan grass field and paddy in Kangwon province were selected and flumes and monitoring wells were installed. Land managements were carefully monitored, water samples were collected periodically and analyzed with respect to nitrate, TP and TKN at a laboratory of Kangwon Provincial Institute of Health and Environment from August, 1993 to May, 1994. Runoff from the pasture was formed mostly with seeping subsurface flow in the lower areas of the pasture. A few overland flows were observed during heavy storms, and when it occurred, runoff increased sharply. For the Sudan grass field, runoff was formed with overland flow. Nitrate concentration in runoff from both land uses seemed not affected by runoff and ranged from 0.241 to 4.137mg'/1. TP and TKN concentrations from the pasture were affected by overland flow. When overland flow occurred, TP and TKN concentrations abruptly increased to 5.726 and 12.841mg/1, respectively, from less than 1.0mg/l. However, these concentrations from the Sudan grass field were quite stable ranging from 0.191 to 0.674mg/l for TP and 0A70 and 1.650mg/l for TKN. Nitrate concentration was significantly affected by land use(Sudan grass field) and the concentration increase reached about 2mg/l per lOOm ground water flow. Nitrate concentration from a well located in the middle of rice fields also was significantly higher than that measured from a well located relatively undisturbed mountain toe area. TP and TKN concentrations in shallow ground water affected by the depth of the monitoring wells. The deeper the monitoring wells, the less TP and TKN concentrations were measured.

  • PDF