DOI QR코드

DOI QR Code

The assessment of the contribution of overland flow to basin response by means of hydrological approach

수문학적 접근법에 의한 유역응답내 지표면유동의 기여도 평가

  • Kim Joo-Cheol (Industrial Technology Research Institute, Chungnam National Univ.) ;
  • Yoon Yeo-Jin (Dept. of Civil System Engrg., Konyang Univ.) ;
  • Kim Jae-Han (Dept. of Civil Engrg., Chungnam National Univ.)
  • 김주철 (충남대학교부속 산업기술연구소) ;
  • 윤여진 (건양대학교 토목시스템공학과) ;
  • 김재한 (충남대학교 토목공학과)
  • Published : 2006.07.01

Abstract

The relative contributions of overland-flow and stream-flow to the response process at the basin scale are evaluated in the present study. The moments of GIUH models were applied to the data of the Bocheong watershed in the Geum river basin in Korea in order to discuss the feasibility. The GIUH model derived in this study consists of the stream path and overland region. The characteristic velocities for the flows between two cases mentioned above make a clear distinction as expected and would have more physical meaning than the ones of the model by Rodriguez-Iturbe and Valdes(1979). The path lengths of overland for each stream order are nearly constant, whereas the case of stream is shown to grow larger according to the basin sizes. As a result, the overall basin response process was founded out to be greatly under the influence of the hydrodynamic behavior of overland, and its behavior is suggested to be further researched for catching the broader meanings.

본 연구에서는 유역규모의 응답과정에 대한 지표면유동과 하천유동의 상대적 기여도를 평가해 보고자 한다. 이를 위하여 GIUH 모형의 적률을 금강수계 보청천유역의 자료에 적용하였다. 본 연구에서 유도된 GIUH 모형은 하천 및 지표면에 대한 개별적인 배수경로들로 구성된다. 사전에 예상된 바와 같이, 양자의 특성속도는 현저하게 구별될 수 있었다. 이를 Rodriguez-Iturbe and Valdes(1979)의 모형에 의한 특성속도와 비교해본 결과 본 연구에서 산정된 특성속도가 보다 물리적인 의미를 내포하고 있음을 알 수 있었다. 또한 지표변유동의 경우 경로길이가 거의 일정한 반면, 하천유동의 경우 유역규모에 따라 경로길이가 길어지는 경향을 볼 수 있었다. 그 결과로서, 지표면의 동수역학적 거동특성이 전반적인 유역의 응답과정에 상당한 영향을 미치고 있음을 확인할 수 있었다. 이에 대한 보다 폭 넓은 해석을 위하여 후속 연구가 필요할 것으로 판단된다.

Keywords

References

  1. 김주철, 윤여진, 김재한 (2005). 'Nash 모형의 지체시간 을 이용한 GIUH 유도', 한국수자원학회논문집, 38 (10), pp. 801-810 https://doi.org/10.3741/JKWRA.2005.38.10.801
  2. 김재한 (2005). 수문계의 수학적 모형, 선형계를 중심으로, 도서출판새론
  3. Cheng, B.M. (1982). A study of geomorphologic instantnneous unit ltydrograph; Ph. D. thesis, Univ. of illinois, Urbana, Ill
  4. Chutha, P., and Dooge, J.C.I. (1990). 'The shape parameters of the geomorphologic unit hydrograph', Journal of Hydrology, 117, pp. 81-97 https://doi.org/10.1016/0022-1694(90)90087-E
  5. D'Odorico, P., and Rigon, R. (2003), 'Hillslope and channel contributions to the hydrologic response', Water Resources Research, 39(5), SWC1-1-SWC1-9
  6. Dooge, J.C.I. (1973). Linear theory of hydrologic systems, Technical Bulletin, 1468, Agricultural Research Service, U.S. Dept. of Agriculture, Washington, D.C
  7. Franchini, M. and O'Connell, P.E. (1996). 'An analysis of the dynamic component of the geomorphologic instantaneous unit hydrograph', Journal of Hydrology, 175, 407-428 https://doi.org/10.1016/S0022-1694(96)80018-7
  8. Gupta, V.K., Waymire, E. and Wang, C.T. (1980). 'A Representation of an instantaneous unit hydrograph from geomorphology', Water Resources Research, 16(5), pp. 855-862 https://doi.org/10.1029/WR016i005p00855
  9. Jin, C.X. (1992). 'A deterministic gamma type geomorphologic instantaneous unit hydrograph based on path types', Water Resources Research, 28(2), pp. 479-486 https://doi.org/10.1029/91WR02577
  10. Kirshen, D.M., and Bras, R.L. (1983). 'The linear channel and its effects on the geomorphologic IUH', Journal of Hydrology, 65, pp. 175-208 https://doi.org/10.1016/0022-1694(83)90216-0
  11. Lee, K. T., and Chang, C. (2005). 'Incorporating subsurface-flow mechanism into geomorphologybased IUH modeling', Journal of Hydrology, 311, pp. 91-105 https://doi.org/10.1016/j.jhydrol.2005.01.008
  12. Moussa, R. (2003). 'On morphometric properties of basins, scale effects and hydrological response', Hydrological Processes, 17, pp. 33-58 https://doi.org/10.1002/hyp.1114
  13. Nash, J.E. (1957). 'The form of the instantaneous unit hydrograph', lASH Assemblee Generale de Toronto, (3), pp. 114-121
  14. Nash, J.E. (1959). 'Systematic determination of unit hydrograph parameters', Journal of Geophysical Research, 64(1), pp. 111-115 https://doi.org/10.1029/JZ064i001p00111
  15. Rinaldo, A., Marani, A., and Rigon, R. (1991). 'Geomorphological dispersion', Water Resources Research, 27(4), pp. 513-525 https://doi.org/10.1029/90WR02501
  16. Rinaldo, A., Vogel, G.K., Rigon, R., and Rodriguezlturbe, I. (1995). 'Can one gauge the shape of a basin?', Water Resources Research, 31(4), pp. 1119-1127 https://doi.org/10.1029/94WR03290
  17. Robinson, J.S., Sivapalan, M., and Snell, J.D. (1995). 'On the relative roles of hillslope processes, channel routing, and network geomorphology in the hydrologic response of natural catchments', Water Resources Research, 31(12), pp. 3089-3101 https://doi.org/10.1029/95WR01948
  18. Rodriguez-Iturbe, I. and Valdes, J.B. (1979). 'The geomorphologic structure of hydrologic response', Water Resources Research, 15(6), pp. 1400-1420
  19. Shamseldin, A. Y., and Nash, J.E. (1998). 'The geomorphological unit hydrograph - a critical review', Hydrology and Earth System Science, 2(1), pp. 1-8 https://doi.org/10.5194/hess-2-1-1998
  20. van der Tak, L.D., and Bras, R.L. (1990). 'Incorporating hillslope effects into the geomorphologic instantaneous unit hydrograph', Water Resources Research, 26(10), pp. 2393-2400 https://doi.org/10.1029/WR026i010p02393
  21. White, A.B., Kurmar, P., Saco, P.M Rhoads, B.L., and Yen, B.C.(2004) 'Hydrodynamic and geomorphologic dispersion: scale effects in the Illinois river basin', Journal of Hydrology, 288, pp. 237-257 https://doi.org/10.1016/j.jhydrol.2003.10.019

Cited by

  1. Key Parameters and Input Variables for the Reduction of Uncertainty using Modified Pedigree Matrix vol.16, pp.1, 2016, https://doi.org/10.9798/KOSHAM.2016.16.1.329