Browse > Article
http://dx.doi.org/10.26748/KSOE.2022.036

Numerical Investigation of Countermeasure Effects on Overland Flow Hydrodynamic and Force Mitigation in Coastal Communities  

Hai Van Dang (Department of Marine Science and Convergent Technology, Hanyang University ERICA)
Sungwon Shin (Department of Marine Science and Convergent Technology, Hanyang University ERICA)
Eunju Lee (Department of Marine Science and Convergent Technology, Hanyang University ERICA)
Hyoungsu Park (Department of Civil and Environmental Engineering, University of Hawaii at Manoa)
Jun-Nyeong Park (Department of Marine Science and Convergent Technology, Hanyang University ERICA)
Publication Information
Journal of Ocean Engineering and Technology / v.36, no.6, 2022 , pp. 364-379 More about this Journal
Abstract
Coastal communities have been vulnerable to extreme coastal flooding induced by hurricanes and tsunamis. Many studies solely focused on the overland flow hydrodynamic and loading mechanisms on individual inland structures or buildings. Only a few studies have investigated the effects of flooding mitigation measures to protect the coastal communities represented through a complex series of building arrays. This study numerically examined the performance of flood-mitigation measures from tsunami-like wave-induced overland flows. A computational fluid dynamic model was utilized to investigate the performance of mitigation structures such as submerged breakwaters and seawalls in reducing resultant forces on a series of building arrays. This study considered the effects of incident wave heights and four geometrically structural factors: the freeboard, crest width of submerged breakwaters, and the height and location of seawalls. The results showed that prevention structures reduced inundation flow depths, velocities, and maximum forces in the inland environment. The results also indicated that increasing the seawall height or reducing the freeboard of a submerged breakwater significantly reduces the maximum horizontal forces, especially in the first row of buildings. However, installing a low-lying seawall closer to the building rows amplifies the maximum forces compared to the original seawall at the shoreline.
Keywords
Numerical simulation; Overland flow; Flooding mitigation structures; Hydrodynamic and force reduction; Tsunami;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Dang, H.V., Park, J.-N., Ha, T., Park, H., Shin, S., & Cox, D. (2022). Numerical investigation of countermeasure effects on tsunami inundation hydrodynamic and force mitigation in the coastal communities. Proceedings of 2022 spring symposium of the Korea Association of Ocean Science and Technology Societies.
2 Dang, V. H., Park, H., Lee, D., Shin, S., Lee, E., Cox, D., & Lomonaco, P. (2022). Physical modeling of hard structure effects on tsunami force reduction in urban coastal environment. In Ports 2022 (pp. 417-427). https://doi.org/10.1061/9780784484395.042   DOI
3 Eamon, C. D., Fitzpatrick, P., & Truax, D. D. (2007). Observations of structural damage caused by hurricane Katrina on the Mississippi Gulf coast. Journal of Performance of Constructed Facilities. 21(2), 117-127. https://doi.org/10.1061/(ASCE)0887-3828(2007)21:2(117)   DOI
4 Higuera, P., Losada, I., & Lara, J.L. (2015). Three-dimensional numerical wave generation with moving boundaries. Coastal Engineering, 101, 35-47. https://doi.org/10.1016/j.coastaleng.2015.04.003   DOI
5 Ishii, H., Takabatake, T., Esteban, M., Stolle, J., & Shibayama, T. (2021). Experimental and numerical investigation on tsunami run-up flow around coastal buildings. Coastal Engineering Journal, 63(4), 485-503. https://doi.org/10.1080/21664250.2021.1949920   DOI
6 Kihara, N., Arikawa, T., Asai, T., Hasebe, M., Ikeya, T., Inoue, S., Kaida, H., … Watanabe, M. (2021). A physical model of tsunami inundation and wave pressures for an idealized coastal industrial site. Coastal Engineering, 169, 103970. https://doi.org/10.1016/j.coastaleng.2021.103970   DOI
7 Lee, H- J., & Shin, M- S. (2011). Study of wave absorbing effect of submerged breakwater. Journal of Ocean Engineering and Technology, 25(6), 29-34. https://doi.org/10.5574/KSOE.2011.25.6.029   DOI
8 Li, X., & Zhang, W. (2019). 3D numerical simulation of wave transmission for low-crested and submerged breakwaters. Coastal Engineering, 152, 103517. https://doi.org/10.1016/j.coastaleng.2019.103517   DOI
9 Lukkunaprasit, P., & Ruangrassamee, A. (2008). Building damage in Thailand in the 2004 Indian Ocean tsunami and clues for tsunami-resistant design. The IES Journal Part A: Civil & Structural Engineering, 1(1), 17-30. https://doi.org/10.1080/19373260701620162   DOI
10 Moris, J. P., Kennedy, A. B., & Westerink, J. J. (2021). Tsunami wave run-up load reduction inside a building array. Coastal Engineering, 169, 103910. https://doi.org/10.1016/j.coastaleng.2021.103910   DOI
11 Oshnack, M. E., Aguiniga, F., Cox, D., Gupta, R., & Van de Lindt, J. (2009). Effectiveness of small onshore seawall in reducing forces induced by Tsunami bore: large scale experimental study. Journal of Disaster Research, 4(6), 382-390. https://doi.org/10.20965/jdr.2009.p0382   DOI
12 Park, H., Cox, D. T., Lynett, P. J., Wiebe, D. M., & Shin, S. (2013). Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum flux. Coastal Engineering, 79, 9-21. https://doi.org/10.1016/j.coastaleng.2013.04.002   DOI
13 Park, S., Song, S., Wang, H., Joung, T., & Shin, Y. (2017). Parametric study on scouring around suction bucket foundation. Journal of Ocean Engineering and Technology, 31(4), 281-287. https://doi.org/10.26748/KSOE.2017.08.31.4.281   DOI
14 Qin, X., Motley, M. R., & Marafi, N. A. (2018). Three-dimensional modeling of tsunami forces on coastal communities. Coastal Engineering, 140, 43-59. https://doi.org/10.1016/j.coastaleng.2018.06.008   DOI
15 Sogut, E., Sogut, D. V., & Farhadzadeh, A. (2019). Effects of building arrangement on flow and pressure fields generated by a solitary wave interacting with developed coasts. Advances in Water Resources, 134, 103450. https://doi.org/10.1016/j.advwatres.2019.103450   DOI
16 Raby, A., Macabuag, J., Pomonis, A., Wilkinson, S., & Rossetto, T. (2015). Implications of the 2011 Great East Japan Tsunami on sea defence design. International Journal of Disaster Risk Reduction, 14, 332-346. https://doi.org/10.1016/j.ijdrr.2015.08.009   DOI
17 Rahman, S., Akib, S., Khan, M., & Shirazi, S. (2014). Experimental study on tsunami risk reduction on coastal building fronted by sea wall. The Scientific World Journal, 2014, 729357. https://doi.org/10.1155/2014/729357   DOI
18 Sogut, D. V., Sogut, E., & Farhadzadeh, A. (2021). Interaction of a solitary wave with an array of macro-roughness elements in the presence of steady currents. Coastal Engineering, 164, 103829. https://doi.org/10.1016/j.coastaleng.2020.103829   DOI
19 Sun, W., Qu, K., Kraatz, S., Deng, B., & Jiang, C. (2020). Numerical investigation on performance of submerged porous breakwater to mitigate hydrodynamic loads of coastal bridge deck under solitary wave. Ocean Engineering, 213, 107660. https://doi.org/10.1016/j.oceaneng.2020.107660   DOI
20 Sweet, W. V., Kopp, R. E., Weaver, C. P., Obeysekera, J., Horton, R. M., Theiler, E. R., & Zervas, C. (2017). Global and Regional Sea Level Rise Scenarios for the United States (NOAA Technical Report NOS CO-OPS 083). National Oceanic and Atmospheric Administration / National Ocean Service. https://pubs.giss.nasa.gov/abs/sw01000b.html
21 Thomas, S., & Cox, D. (2012). Influence of finite-length seawalls for tsunami loading on coastal structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, 138(3), 203-214. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000125   DOI
22 Aarup, T., Aliaga, B., Elliot, T., Kodijat, A., & Yamamoto, M. (2012). Summary Statement from the Japan - UNESCO - UNU Symposium on The Great East Japan Tsunami on 11 March 2011 and Tsunami Warning Systems: Policy erspectives 16 - 17 February 2012. UNESCO/IOC: Paris. https://www.vliz.be/en/imis?refid216585
23 Aghababaei, M., Koliou, M., & Paal, S. G. (2018). Performance assessment of building infrastructure impacted by the 2017 Hurricane Harvey in the Port Aransas region. Journal of Performance of Constructed Facilities, 32(5), 4018069. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001215   DOI