• Title/Summary/Keyword: overexpressed

Search Result 685, Processing Time 0.025 seconds

Synaptic Facilitation of Naive and Depressed Synapses in Aplysia

  • Chang, Deok-Jin;Kaang, Bong-Kiun
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.23-23
    • /
    • 2001
  • To evaluate the contribution of cAMP/PKA signal pathway in short-term facilitation, we overexpressed Ap oal receptor in sensory neurons that do not normally express this receptor. We have previously shown that activation of this receptor in sensory cells, by a brief treatment with octopamine (OA), produced short-term facilitation such as membrane depolarization, increase in membrane excitability, spike broadening, and enhanced neurotransmitter release in non-depressed synapse.(omitted)

  • PDF

Interaction of Cytochrome c and $Mn^{2+}$ -Cytochrome c Peroxidase

  • Kim, Mun-kyoung;M. Kwon;Kim, K.;Sanghwa Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.44-44
    • /
    • 1999
  • Yeast cytochrome c peroxidase (CcP) was cloned and overexpressed in E. coli, and purified by a Ni$^{2+}$-affinity column. HoloCcP was obtained by reconstituting apoCcP with Mn$^{3+}$-protoporphyrin IX (MnPP). Electron paramagnetic resonance (EPR) spectra of spin-labeled holoCcP showed a slightly more immobilized signal than spin-labeled apoCcP.(omitted)

  • PDF

Characterization of the recombinant cellulase A from Thermotoga maritima

  • Kim, Chung Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.213-216
    • /
    • 2021
  • A gene encoding thermostable cellulase A (TmCelA) was isolated from Thermotoga maritima. The open reading frame of TmCelA gene was 774 bp long which predicted to encode 257 amino acid residues with a molecular weight of 29,732 Da. To examine the biochemical properties, the TmCelA was overexpressed in E. coli BL21, and expressed protein was purified. The optimum temperature of recombinant TmCelA was 90-95 ℃, and the optimum pH of recombinant TmCelA was approximately pH 5.0. Recombinant TmCelA was stable at temperature below 90 ℃.

REGULATION OF β-CATENIN IN THE WNT SIGNALING PATHWAY AND EMT VIA OPTIMAL CONTROL

  • Sooyoun Choi;Il Hyo Jung
    • East Asian mathematical journal
    • /
    • v.39 no.1
    • /
    • pp.65-73
    • /
    • 2023
  • In this paper, we present an optimal control strategy to prevent the EMT process by downregulating the level of overexpressed β-catenin in the cytoplasm. To do this, we propose a mathematical model that expresses relationship between the Wnt signaling pathway and TGF-β in cancer cells. We also define an optimal control problem considering the side effects that occur simultaneously with the method for controlling the concentration of β-catenin. Finally numerical simulations show that treatment effect is quantitatively changes depending on the concentration of core proteins of the Wnt signaling pathway.

Production of L-DOPA by Thermostable Tyrosine Phenol-lyase of a Thermophilic Symbiobacterium Species Overexpressed in Recombinant Escherichia coli

  • Lee, Seung-Goo;Ro, Hyeon-Su;Hong, Seung-Pyo;Kim, Eun-Hwa;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.98-102
    • /
    • 1996
  • A thermostable tyrosine phenol-lyase gene of a thermophilic Symbiobacterium species was cloned and overexpressed in Escherichia coli in order to produce the biocatalyst for the synthesis of 3, 4-dihy-droxyphenyl-L-alanine (L-DOPA). The substrates used for the synthetic reaction were pyrocatechol, so-dium pyruvate, and ammonium chloride. The enzyme was stable up to $60^{\circ}C$, and the optimal temperature for the synthesis of L-DOPA was $37^{\circ}C$ . The optimal pH of the reaction was about 8.3. Enzyme activity was highly dependent on the amount of ammonium chloride and the optimal concentration was estimated to be 0.6 M. In the case of pyrocatechol, an inactivation of enzyme activity was observed at con-centrations higher than 0.1 M. Enzyme activity was increased by the presence of ethanol. Under op-timized conditions, L-DOPA production was carried out adding pyrocatechol and sodium pyruvate to the reaction solution intermittently to avoid substrate depletion during the reaction. The concentration of L-DOPA reached 29.8 g/l after 6 h, but the concentration didn t increase further because of the formation of byproducts by a non-enzymatic reaction between L-DOPA and pyruvate.

  • PDF

Expression of B Cell Activating Factor Pathway Genes in Mouse Mammary Gland

  • Choi, S.;Jung, D.J.;Bong, J.J.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • In our previous study, overexpression of extracellular proteinase inhibitor (Expi) gene accelerated apoptosis of mammary epithelial cells, and induced expression of B cell activating factor (BAFF) gene. In this study, we found induction of BAFF-receptor (BAFF-R) gene expression in the Expi-transfected cells. A proliferation-inducing ligand (APRIL) gene is another TNF family member and the closest known relative of BAFF. We found induction of APRIL gene expression in the Expi-overexpressed apoptotic cells. NF-${\kappa}$B gene was also induced in the Expi-overexpressed cells. Expression patterns of BAFF and APRIL pathway-related genes were examined in in vivo mouse mammary gland at various reproductive stages. Expression levels of BAFF gene were very low at early pregnancy, increased from mid-pregnancy, and peaked at lactation, and thereafter decreased at involution stages of mammary gland. Expression of BAFF-R gene was highly induced in involution stages compared to lactation stages. Thus, expression patterns of BAFF-R gene were correlated to apoptotic status of mammary gland: active apoptosis of mammary epithelial cells occurs at involution stage of mammary gland. Expression levels of NF-${\kappa}$B gene were higher in involution stages compared to lactation stages. We analyzed mRNA levels of bcl-2 family genes from different stages of mammary development. Bcl-2 gene expression was relatively constant during lactation and involution stages. There was a slight increase in bcl-xL gene expression in involution stages compared to lactation state. Bax gene expression was highly induced in involution stage. Our results suggest that signaling pathways activated by both BAFF and ARRIL in mammary gland point towards NF-${\kappa}$B activation which causes upregulation of bax.

Middle East Respiratory Syndrome-Coronavirus Infection into Established hDPP4-Transgenic Mice Accelerates Lung Damage Via Activation of the Pro-Inflammatory Response and Pulmonary Fibrosis

  • Kim, Ju;Yang, Ye Lin;Jeong, Yongsu;Jang, Yong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.427-438
    • /
    • 2020
  • Middle East respiratory syndrome coronavirus (MERS-CoV) infects the lower respiratory airway of humans, leading to severe acute respiratory failure. Unlike human dipeptidyl peptidase 4 (hDPP4), a receptor for MERS-CoV, mouse DPP4 (mDPP4) failed to support MERS-CoV infection. Consequently, diverse transgenic mouse models expressing hDPP4 have been developed using diverse methods, although some models show no mortality and/or only transient and mild-to-moderate clinical signs following MERS-CoV infection. Additionally, overexpressed hDPP4 is associated with neurological complications and breeding difficulties in some transgenic mice, resulting in impeding further studies. Here, we generated stable hDPP4-transgenic mice that were sufficiently susceptible to MERS-CoV infection. The transgenic mice showed weight loss, decreased pulmonary function, and increased mortality with minimal perturbation of overexpressed hDPP4 after MERS-CoV infection. In addition, we observed histopathological signs indicative of progressive pulmonary fibrosis, including thickened alveolar septa, infiltration of inflammatory monocytes, and macrophage polarization as well as elevated expression of profibrotic molecules and acute inflammatory response in the lung of MERS-CoV-infected hDPP4-transgenic mice. Collectively, we suggest that this hDPP4-transgenic mouse is useful in understanding the pathogenesis of MERS-CoV infection and for antiviral research and vaccine development against the virus.

Overexpression of Gene Encoding Tonoplast Intrinsic Aquaporin Promotes Urea Transport in Arabidopsis

  • Kim, Sun-Hee;Kim, Kang-Il;Ju, Hyun-Woo;Lee, Ho-Joung;Hong, Suk-Whan
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.102-110
    • /
    • 2008
  • Complementation assay of the urea uptake-defective yeast mutants led to the identification of the Arabidopsis AtTIP4;1 gene encoding the aquaporin. However, its physiological functions still remain elusive. In the present study, histochemical and genetic analyses were performed to understand the physiological roles of AtTIP4;1 in urea uptake. The AtTIP4;1 product was detectible in the roots, but not in the leaves, the stem, and the flower. Its promoter allowed the expression of the $\beta$-glucuronidase reporter gene in the roots and the apical meristem in Arabidopsis. The AtTIP4;1 products were induced under nitrogen-deficient conditions. To investigate the role of the tonoplast intrinsic protein in urea transport and developments, Arabidopsis with the loss- and the gain-of-function mutations by T-DNA insertion in AtTIP4;1 and 35S promoter-mediated overexpression of AtTIP4;1 were identified, respectively. The transfer DNA insertion and the AtTIP4;1-overexpressed plants showed normal growth and development under normal or abiotic stress growth conditions. The urea-uptake studies using $^{14}C$-labeled urea revealed higher accumulation of urea in the AtTIP4;1-overexpressed plants. These results provide evidence that overexpression of AtTIP4;1 leads to the increase in the urea-uptake rate in plants without detectable defects to the growth and development.

Expression of Intercellular Adhesion Molecule-1 and E-Selectin in Gastric Cancer and Their Clinical Significance

  • Jung, Woo-Chul;Jang, You-Jin;Kim, Jong-Han;Park, Sung-Soo;Park, Seong-Heum;Kim, Seung-Joo;Mok, Young-Jae;Kim, Chong-Suk
    • Journal of Gastric Cancer
    • /
    • v.12 no.3
    • /
    • pp.140-148
    • /
    • 2012
  • Purpose: Among cell adhesion molecules, serum levels of intercellular adhesion molecule-1 and E-selectin are known to be correlated with the metastatic potential of gastric cancer. In the present study, the authors investigated the expression of intercellular adhesion molecule-1 and E-selectin in gastric cancer tissues and cultured gastric cancer cells, and examined their clinical value in gastric cancer. Materials and Methods: The protein was extracted from gastric cancer tissues and cultured gastric cancer cells (MKN-28 and Kato-III) and the expression of intercellular adhesion molecule-1 and E-selectin was examined by western blotting. The clinical significance of intercellular adhesion molecule-1 and E-selectin was explored, using immunohistochemical staining of specimens from 157 gastric cancer patients. Results: In western blot analysis, the expressions of intercellular adhesion molecule-1 in gastric cancer tissues and cultured gastric cancer cells were increased, however, E-selectin in gastric cancer tissues and cells were not increased. Among 157 gastric cancer patients, 79 patients (50%) were intercellular adhesion molecule-1 positive and had larger tumor size, an increased depth of tumor invasion, lymph node metastasis and perineural invasion. The intercellular adhesion molecule-1 positive group showed a higher incidence of tumor recurrence (40.5%), and a poorer 3-year survival than the negative group (54.9 vs. 85.9%, respectively). Conclusions: Intercellular adhesion molecule-1 is overexpressed in gastric cancer tissues and cultured gastric cancer cells, whereas E-selectin is not overexpressed. Increased expression of intercellular adhesion molecule-1 in gastric cancer could be related to the aggressive nature of the tumor, and has a poor prognostic effect on gastric cancer.

Cloning and Characterization of a Bile Salt Hydrolase from Enterococcus faecalis Strain Isolated from Healthy Elderly Volunteers (사람 분변에서 분리한 Enterococcusfaecalis가 생성하는 BileSaltHydrolase의 특징)

  • Eom, Seok-Jin;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • Bile salt hydrolase (BSH, EC 3.5.1.24) activity, which cleaves amide bond between carboxyl group (bile acid) and amino group (glycine or taurine), is commonly detected in gut-associated species of human and animal. During the screening of BSH active strains from the fecal samples of elderly human volunteers, strain CU30-2 was isolated on the basis of the highly active BSH producing activity. A bsh gene of the isolate was cloned into the pET22b expression vector and overexpressed in Escherichia coli BL21 (DE3) Gold by induction with 1mM IPTG. The overexpressed BSH enzyme with 6x His-tag was purified with apparent homogeneity using a $Ni^+$-NTA agarose column and characterized. The BSH enzyme of E. faecalis CU30-2 exhibited approximately 50 times higher activity against glycol-conjugated bile salts than tauro-conjugated bile salts having the highest activity against glycocholic acid. Considering the prevalence of E. faecalis strains in the human GI tract and glycol-conjugates dominated bile acid composition of human bile, further study is needed to investigate the impact of the BSH activity exerted by E. faecalis strains to the host as well as to the BSH producing strains.

  • PDF