• 제목/요약/키워드: overexpressed

Search Result 690, Processing Time 0.042 seconds

COX-2 increase tumor-associated angiogenesis and tumor growth by eNOS-dependent pathway (eNOS 의존적 pathway를 통한 COX-2의 tumor 성장 증가와 tumor 혈관신생 증가)

  • Sohn, Eun-Hwa;Nam, Seung-Koong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.1068-1071
    • /
    • 2011
  • Cyclooxygenases (COX)-2 has been highly expressed in a variety of tumor cells and involved inflammatory process, tumor-associated angiogenesis, and vascular functions but the underlying mechanism is not clearly elucidated. We here investigated the molecular mechanism by which COX-2 regulates tumor-associated angiogenesis. In vivo, we injected B16-F1 cells overexpressed with COX-2 or mock in wild type or eNOS-deficient mice. Tumor cells overexpressed with COX-2 increase tumor-associated angiogenesis and tumor growth compared with control cells and that the effect of COX-2 was lower in eNOS-deficient mice than wild type mice. These results may contribute to further understanding of the regulation of angiogenesis by COX during tumor metastasis and inflammation.

  • PDF

The Function of eryBVII Gene is to Epimerize TDP-6-Deoxy-L-threo-D-glycero-4-hexulose in the Biosynthesis of Erythromycin A

  • Kim, Won-Young;Kim, Choon-Keun;Han, Ok-Soo
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.72-75
    • /
    • 1999
  • In an effort to understand the function of the eryBVII gene in the erythromycin biosynthetic gene cluster, we overexpressed the eryBVII gene in E. coli and TDP-6-deoxy-L-threo-D-glycero-4-hexulose was used as a substrate of the overexpressed EryBVII enzyme. The enzymatic reaction product was chemically modified by reduction and peracetylation. Structural analysis of the derivatized enzymatic products by GC-Mass Spectrophotometry indicated that TDP-6-deoxy-L-threo-D-glycero-4-hexulose could be converted into its epimer by EryBVII enzyme. Based on this result, TDP-6-deoxy-L-threo-D-glycero-4-hexulose was indeed the substrate of EryBVII enzyme and the function of the eryBVII gene was confirmed.

  • PDF

Cloning and Overexpression of Methylcatechol 2, 3-Dioxygenase Gene from Toluene-Degrading Pseudomonas putida mt-2(pWWO)

  • Lee, Jeong-Rai;Min, Kyung-Rak;Kim, Young-Soo
    • Archives of Pharmacal Research
    • /
    • v.15 no.4
    • /
    • pp.360-364
    • /
    • 1992
  • Methylcatechol 2, 3-dioxygenase encoded in pWWO megaplasmid of Pseudomonas putida mt-2 has been cloned and overexpressed in Escherichia coli. This enzyme gene has been localized inside 2. 3-kb XhoI fragment derived from the pWWO megaplasmid. Analysis of enzyme activity and SDS-PAGE showed that the cloned methylcatechol 2, 3-dioxygenase gene in E. coli was about 100 fold overexpressed compared with the parental gene in P. putida mt-2 (pWWO). The cloned enzyme exhibited higher ring-fission activity to catechol than catechol derivatives including 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol.

  • PDF

Purification and Characterization of the Recombinant Bacillus pasteurii Urease Overexpressed in Escherichia coli

  • Shin, In-Seon;Lee, Mann-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.255-259
    • /
    • 1999
  • A 6.9-kb DNA fragment including the minimal Bacillus pasteurii urease gene cluster was subcloned into a high-copy-number plasmid vector, pUC19, and the recombinant B. pasteurii urease was overexpressed in Escherichia coli. The recombinant urease was purified 25.9-fold by using combinations of anion-exchange and gel-filtration chromatography followed by Mono-Q chromatography on a FPLC. N-terminal peptide sequencing analyses revealed that two distinct smaller peptide bands resolved on a 10-18% gradient SDS-PAGE corresponded to UreA and UreB peptides, respectively. It was also shown that the ureB gene was translated from a GUG codon and the first methionine residue was post-translationally cleaved off. The native molecular weight of the recombinant urease was 176,000 and 2 nickel atoms were present per catalytic unit. pH stability studies of the purified enzyme showed that the recombinant Bacillus pasteurii urease is stable in alkaline pH range, which is similar to the enzyme of the evolutionarily related bacterium, Sporosarcina ureae.

  • PDF

Genetic Engineering for Detection of Endocrine Disruption using I-18 C Gene Expression in Chironomus riparius

  • Kwak Inn-Sil
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.3 s.59
    • /
    • pp.269-274
    • /
    • 2005
  • The 2D/E gel analysis for polypeptide expression reflecting I-18 C gene (early-ecdysterone inducible gene) has conducted the emerged C. riparius adults from larval phase exposure to tebufenozide acting as an ecdysteroidal molting hormone. Control group, the amount of ORE II of the I-18 C gene was larger than that of ORE I of this gene. After treatments, ORE I of the I-18 C gene was overexpressed as the polypeptide, whereas ORF II of this gene was expressed as the polypeptide and was clearly reduced expression. Accordingly, we consider that tebufenozide exhibited endocrine disruptions related processing of ecdysteroid receptor protein reflecting ORF II of I-18 C gene. Also, earlier emergence day was related overexpressed polypeptide reflecting ORE I of I-18 C gene. In this study result, tebufenozide induced changing of physiological condition, and then polypeptide expression reflecting early-ecdysterone inducible I-18 C gene was different between control group and exposure group.

Overexpressed Mitochondrial Thioredoxin Protects PC12 Cells from Hydrogen Peroxide and Serum-deprivation

  • Lee, Yun-Song;Yu, Seung-A
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • Oxidative damage to mitochondria is a critical mechanism in necrotic or apoptotic cell death induced by many kinds of toxic chemicals. Thioredoxin (Trx) family proteins are known to play protective roles in organisms under oxidative stress through redox reaction by using reducing equivalents of cysteines at a conserved active site, Cys-X-X-Cys. Whereas biological and physiological properties of Trx1 are well characterized, significance of mitochondrial thioredoxin (Trx2) is not well known. Therefore, we addressed physiological role of Trx2 in PC12 cells under oxidative stress. In PC12 cells, transiently overexpressed Trx2 significantly reduced cell death induced by hydrogen peroxide, whereas mutant Trx2, having serine residues instead of two cysteine residues at the active site did not. In addition, stably expressed Trx2 protected PC12 cells from serum deprivation. These results suggest that Trx2 may play defensive roles in PC12 cells by reducing oxidative stress to mitochondria.

Overexpressed HRD3 Protein Required for Excision Repair of Schizosaccharomyces pombe is Toxic to the Host Cell (효모에서 절제회복에 관여하는 HRD3 유전자 과 발현이 숙주세포에 미치는 영향)

  • Choi In Soon
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.4
    • /
    • pp.287-294
    • /
    • 2003
  • 출아형 효모 Saccharomyces cerevisiae RAD3 유전자는 절제회복 및 세포의 생존에 필수적이며, DNA dependent ATPase와 DNA-RNA helicase활성을 가지고 있는 것으로 알려져 있다. 본 연구는 분열형 효모 Schizosaccharomyces pombe에서 절제회복과 세포의 생존에 필수적인 출아형 효모 RADS유전자와 유사한 유전자를 S. pombe genomic DNA library에서 분리하여 그 특성을 연구하였다. 분리한 RADS 유사유전자를 HRD3 유전자라 명명하였다. 발현 vector pET3a를 이용하여 분리한 HRD3 유전자를 과 발현하였을 때 HRD3단백질은 숙주단백질의 합성 억제 또는 분해 촉진을 유발하여 숙주세포인 대장균에 독성 효과를 나타냄이 관찰되었다. HRD3유전자와 lacZ유전자를 융합시킨 여러 가지 재조합 vector를 만들어 이들 융합단백질을 분리하였다. 이 결과 HRD3단백질의 카르복실 말단 부위가 DNA회복기능과 대장균에서의 독성효과를 나타내는 중요한 부위로 생각된다.

Transcription Factor PU.1 Inhibits Aspergillus fumigatus Infection via Surfactant Protein-D

  • Kim, Sung-Su
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.175-182
    • /
    • 2018
  • Aspergillosis is a life-threatening disease in individuals with compromised immune systems. Fungal invasion is a highly critical process during host cellular infection. Several papers have reported that transcription factors are responsible for the infection process. To investigate what transcription factors are involved in the process in an effort to inhibit fungal infection into cells, I checked the surfactant protein family and PU.1 transcription factor levels in A549 cells infected with A. fumigatus conidia. PU.1 and surfactant protein-D levels were reduced in cells infected with fungal conidia. I then observed an increase in surfactant protein-D on PU.1-overexpressed cells. Infection of A. fumigatus conidia was decreased in PU.1-overexpressed cells, whereas the suppression of PU.1 did not lead to any changes in cases of A. fumigatus conidia infection. These results indicate that PU.1 inhibits the infection of A. fumigatus conidia via the expression of surfactant protein-D, suggesting that PU.1 is a key transcription factor for protection against A. fumigatus invasion.

Polyubiquitin-Proteasomal Degradation of Leucine-Rich Repeat Kinase 2 Wildtype and G2019S

  • Park, Sangwook
    • Biomedical Science Letters
    • /
    • v.27 no.3
    • /
    • pp.182-186
    • /
    • 2021
  • Parkinson disease (PD) is becoming one of the most neurodegenerative disorder worldwide. The deposited aggregates have been connected in the pathophysiology of PD, which are degraded either by ubiquitin-proteasomal system (UPS) or autophagy-lysosomal pathway (ALP). Leucin-rich repeat kinase 2 (LRRK2), one of the neurodegenerative proteins of PD is also stringently controlled by both UPS and ALP degradation as well. However, the polyubiquitination pattern of LRRK2 aggregates is largely unknown. Here, we found that K63-linked polyubiquitinations of G2019S mutant, most familial variant for PD, is highly enhanced compared to those of wild type LRRK2 (WT). In addition, in the presence of overexpressed p62/SQSTM-1, ubiquitination of LRRK2 WT or D1994A was reduced, whereas G2019S mutant was not diminished significantly. Therefore, we propose that degradation of G2019S via UPS is more involved with K63-linked ubiquitination than K48-linked ubiquitination, and overexpressed p62/SQSTM-1 does not enhance degradative effect on G2019S variant.