Browse > Article
http://dx.doi.org/10.15616/BSL.2021.27.3.182

Polyubiquitin-Proteasomal Degradation of Leucine-Rich Repeat Kinase 2 Wildtype and G2019S  

Park, Sangwook (Department of Biomedical Laboratory Science, College of Health and Medical Science, Sangji University)
Abstract
Parkinson disease (PD) is becoming one of the most neurodegenerative disorder worldwide. The deposited aggregates have been connected in the pathophysiology of PD, which are degraded either by ubiquitin-proteasomal system (UPS) or autophagy-lysosomal pathway (ALP). Leucin-rich repeat kinase 2 (LRRK2), one of the neurodegenerative proteins of PD is also stringently controlled by both UPS and ALP degradation as well. However, the polyubiquitination pattern of LRRK2 aggregates is largely unknown. Here, we found that K63-linked polyubiquitinations of G2019S mutant, most familial variant for PD, is highly enhanced compared to those of wild type LRRK2 (WT). In addition, in the presence of overexpressed p62/SQSTM-1, ubiquitination of LRRK2 WT or D1994A was reduced, whereas G2019S mutant was not diminished significantly. Therefore, we propose that degradation of G2019S via UPS is more involved with K63-linked ubiquitination than K48-linked ubiquitination, and overexpressed p62/SQSTM-1 does not enhance degradative effect on G2019S variant.
Keywords
Leucin-rich repeat kinase 2; Parkinson disease; P62/SQSTM-1; Ubiquitin-Proteasomal system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu Z, Chen P, Gao H, Gu Y, Yang J, Peng H, Xu X, Wang H, Yang M, Liu X, Fan L, Chen S, Zhou J, Sun Y, Ruan K, Cheng S, Komatsu M, White E, Li L, Ji H, Finley D, Hu R. Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression. Cancer Cell. 2014. 26: 106-120.   DOI
2 Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. 2004. 304: 1158-1160.   DOI
3 Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003. 299: 256-259.   DOI
4 Clark LN, Nicolai A, Afridi S, Harris J, Mejia-Santana H, Strug L, Cote LJ, Louis ED, Andrews H, Waters C, Ford B, Frucht S, Fahn S, Mayeux R, Ottman R, Marder K. Pilot association study of the beta-glucocerebrosidase N370S allele and Parkinson's disease in subjects of Jewish ethnicity. Mov Disord. 2005. 20: 100-103.   DOI
5 Hampton RY. ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol. 2002. 14: 476-482.   DOI
6 Park S, Han S, Choi I, Kim B, Park SP, Joe EH, Suh YH. Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy. PLoS One. 2016. 11: e0163029.   DOI
7 Ho PW, Leung CT, Liu H, Pang SY, Lam CS, Xian J, Li L, Kung MH, Ramsden DB, Ho SL. Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy. 2020. 16: 347-370.   DOI
8 Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011. 147: 728-741.   DOI
9 Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo AM. Interplay of LRRK2 with chaperonemediated autophagy. Nat Neurosci. 2013. 16: 394-406.   DOI
10 Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL, Dawson TM. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell. 2011. 144: 689-702.   DOI
11 Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol. 2009. 10: 1215-1221.   DOI
12 Simon DK, Tanner CM, Brundin P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin Geriatr Med. 2020. 36: 1-12.   DOI
13 Alessi DR, Sammler E. LRRK2 kinase in Parkinson's disease. Science. 2018. 360: 36-37.   DOI
14 Cookson MR. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nat Rev Neurosci. 2010. 11: 791-797.   DOI
15 Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, Bilusic I, Theurillat JP, Overvatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell. 2009. 33: 505-516.   DOI
16 Nguyen APT, Tsika E, Kelly K, Levine N, Chen X, West AB, Boularand S, Barneoud P, Moore DJ. Dopaminergic neuro-degeneration induced by Parkinson's disease-linked G2019S LRRK2 is dependent on kinase and GTPase activity. Proc Natl Acad Sci U S A. 2020. 21; 117: 17296-17307.   DOI
17 Polymerooulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science. 1997. 276: 2045-2047.   DOI