• Title/Summary/Keyword: overall strain

Search Result 457, Processing Time 0.029 seconds

A minimum ductility design method for non-rectangular high-strength concrete beams

  • Au, F.T.K.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • v.1 no.2
    • /
    • pp.115-130
    • /
    • 2004
  • The flexural ductility of solid rectangular reinforced concrete beams has been studied quite extensively. However, many reinforced concrete beams are neither solid nor rectangular; examples include T-, ${\Gamma}$-, ${\Pi}$- and box-shaped beams. There have been few studies on the flexural ductility of non-rectangular reinforced concrete beams and as a result little is known about the possible effect of sectional shape on flexural ductility. Herein, the effect of sectional shape on the post-peak flexural behaviour of reinforced normal and high-strength concrete beams has been studied using a newly developed analysis method that employs the actual stress-strain curves of the constitutive materials and takes into account the stress-path dependence of the stress-strain curve of the steel reinforcement. It was revealed that the sectional shape could have significant effect on the flexural ductility of a concrete beam and that the flexural ductility of a T-, ${\Gamma}$-, ${\Pi}$- or box-shaped beam is generally lower than that of a solid rectangular beam with the same overall dimensions and the same amount of reinforcement provided. Based on the numerical results obtained, a simple method of ensuring the provision of a certain minimum level of flexural ductility to non-rectangular concrete beams has been developed.

The Effect of Flame Radiation on NOx Emission Characteristics in Hydrogen Thrbulent Diffusion Flames (수소 난류확산화염에서 NOx 생성특성에 대한 화염열복사의 영향)

  • Kim, Seung-Han;Kim, Mun-Ki;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2000
  • The relationship among the flame radiation, NOx emissions, residence time, and global strain rate are examined for turbulent non-premixed jet flames with wide variations in coaxial air conditions. Measurements of NOx emission, flame geometry and flame radiation were made to explain the NOx emission scaling based on global parameters such as flame residence time, global strain rate, and radiant fraction. The overall 1/2-power scaling is observed in coaxial air flames, irrespective of coaxial air conditions, but the degree of deviation from the 1/2-slope curve in each case differs from one another. From the comparison between the results of pure hydrogen flames and those of helium diluted hydrogen flames, it is observed that flame radiation plays a significant role in pure hydrogen flames with coaxial air and the deviation from 1/2-power scaling may be explained in two reasons: the difference in the flame radiation and the difference in jet similarity in coaxial air flames. From the radiation measurements, more detailed explanations on these deviations were suggested.

  • PDF

Mannitol Production by Leuconostoc citreum KACC 91348P Isolated from Kimchi

  • Otgonbayar, Gan-Erdene;Eom, Hyun-Ju;Kim, Beom-Soo;Ko, Jae-Hyung;Han, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.968-971
    • /
    • 2011
  • Leuconostoc genus, which comprise heterofermentative lactic acid bacteria, reduces fructose to mannitol by recycling intracellular NADH. To evaluate the mannitol productivities of different Leuconostoc species, 5 stock cultures and 4 newly isolated strains were cultivated in MRS and simplified media containing glucose and fructose (1:2 ratio). Among them, L. citreum KACC 91348P, which was isolated from kimchi, showed superior result in cell growth rate, mannitol production rate, and yield in both media. The optimal condition for mannitol production of this strain was pH 6.5 and $30^{\circ}C$. When L. citreum KACC was cultured in simplified medium in a 2 l batch fermenter under optimal conditions, the maximum volumetric productivity was 14.83 $g{\cdot}l^{-1}h^{-1}$ and overall yield was 86.6%. This strain is a novel and efficient mannitol producer originated from foods to be used for fermentation of fructose-containing foods.

The study on optimum design for shear stress integrated pressure sensor (전단응력형 집적화 압력센서의 최적설계)

  • 주리아;도태성;이종녕;서희돈
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.75-81
    • /
    • 1998
  • This paper is to optimize single-element piezoresistor shear stress strain gauge related to aspect ratio of rectangular diaphragm. The shear stress distribution on diaphragm has been simulated by finite-element method(FEM). As simulation results, the maximum sensitivity for strain gauge was appeared at the center of diaphragm with aspect ratio 3, and in along to long edge with the ratio 2. The diaphragm with ratio 2 is not acceptable due to the yield of mask alignment in IC process technology. The optimum condition of diaphragm with respect to good sensitivity was realized in the case of ratio 3. In this case, the area by gauge was 8% of overall size of rectangular diaphragm.

  • PDF

Analysis of Dynamic Characteristics of Rectangular Plates by Finite Element Method (유한요소법을 이용한 평판의 동특성 연구)

  • 태순호;이태연;허문회
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.2
    • /
    • pp.30-41
    • /
    • 1992
  • Analysis of Dynamic Characterisocs of Rectangular Plate by Finite Element Method. Dynamic characteristics of a rectangular plate with opening in it is studied by finite element method. To investigate these characteristics 12 degrees of freedom membrane finite element in used. The rectangular membrane finite elements are defined by specifying geometry, internal displacement functions and strain-displacement relations. Then, the governing equation for the finite element is derived by energy method. To derive the mass matrix and stiffness matrix of the element, expressions for strain and kineic energy in terms of the node displacement are generated. In constructing the overall structure matrix, the matrix of each elements are superposed and partitioned by applying the given boundary condition to obtain a nonslngular matrix. To find the natural freguencies and viration modes, the eigen values and the corresponding eigen vectors are computed by the computer using well known Jacobi power method. In order to verify the capability of the membrane finite element, a flat rectangular plate is analyzed first, and the result is compared with well known analytical results to show the good agreement. A rectangular plate with opening in It is analyzed with the same finite element. The results are presented in this paper. Unfortunately, the literature study could not provide with some results to compare, but the results reveal that the output of this research is phlslcally reasonable. And the results of this research are useful not only in practice but also for the future experimental research in comparison purpose.

  • PDF

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.

The Stress-Strain Behavior of a Pure Silt Compared with Sand and Clay (사질토 및 점성토와 비교한 순수 실트의 응력 -변형률 거동)

  • 정상섬
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.27-36
    • /
    • 1993
  • The drained and undrained behavior of pure silt was investigated experimentally. Special attention was given to the stress-strain behavior of silt prior to failure and behavior at failure under monotonic and cyclic loading. A pure silica flour was chosen to form samples with two different densities of D,=80%, eo=0.68 and D,=35%, eo=0.9. The isotropically consolidated samples were tested in the triaxial testing device under monotonic undrained, drained compression and extension conditions. Also samples were tested under cyclic undrained condition. Based on the experimental results. it was qualitively identified that the overall behavior of silt is similar to that of sand. When compared with clay, silt shows a significantly different behavior due to its dilatant nature under both the monotonic and cyclic shear loadings.

  • PDF

J-integral of Penny-Shaped Crack on the End of Stiff Fiber Embedded in Rubbery Materials (고무와 섬유로 구성된 복합체 내의 섬유 끝 부분의 원형 균열에 대한 J-적분)

  • Yang, Gyeong-Jin;Gang, Gi-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.617-624
    • /
    • 2002
  • An equation of J-integral for a penny-shaped crack at the end of the fiber embedded in rubber matrix is proposed. The values of J-integral for the specimens with various crack and specimen radius are obtained by FEA(Finite Element Analysis). The dimensional analysis is applied to derive an equation of J-integral as a nonlinear elastic energy release rate. The geometry and deformation calibration function in an equation of J can be expressed in a separated form. The geometry calibration function characterizing the effects of cord and specimen size is expressed in a polynomial form of fourth order. The deformation calibration function characterizes the effect of the overall level of strain. As approaching the infinitesimal strain, the value of the deformation calibration function approaches the results of LEFM(Linear Elastic Fracture Mechanics).

Fretting fatigue life prediction for Design and Maintenance of Automated Manufacturing System (생산자동화 시스템의 설계 및 정비를 위한 프레팅 피로수명 예측)

  • Kim, Jin-Kwang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • Predicting the failure life of automated manufacturing systems can reduce overall downtime, maintenance costs, and total plant operation costs. Therefore, there is a growing interest in fatigue failure mechanisms as the safety or service life assessment of manufacturing systems becomes an important issue. In particular, fretting fatigue is caused by repeated tangential stresses that are generated by friction during small amplitude oscillatory movements or sliding between two surfaces pressed together in intimate contact. Previous studies in fretting fatigue have observed size effects related to contact width such that a critical contact width exists where there is drastic change in the fretting fatigue life. However, most of them are the two-dimensional finite element analyses based on the plane strain assumption. The purpose of this study is to investigate the contact size effects on the three-dimensional finite element model of a finite width of a flat specimen and a cylindrical pad exposed to fretting fatigue. The contact size effects were analyzed by means of the stress and strain averages at the element integration points of three-dimensional finite element model. This study shows that the fretting fatigue life of manufacturing systems can be predicted by three-dimensional finite element analysis based on SWT critical plane model.

Biosynthetic Pathway of Indole-3-Acetic Acid in Basidiomycetous Yeast Rhodosporidiobolus fluvialis

  • Bunsangiam, Sakaoduoen;Sakpuntoon, Varunya;Srisuk, Nantana;Ohashi, Takao;Fujiyama, Kazuhito;Limtong, Savitree
    • Mycobiology
    • /
    • v.47 no.3
    • /
    • pp.292-300
    • /
    • 2019
  • IAA biosynthetic pathways in a basidiomycetous yeast, Rhodosporidiobolus fluvialis DMKU-CP293, were investigated. The yeast strain showed tryptophan (Trp)-dependent IAA biosynthesis when grown in tryptophan supplemented mineral salt medium. Gas chromatography-mass spectrometry was used to further identify the pathway intermediates of Trpdependent IAA biosynthesis. The results indicated that the main intermediates produced by R. fluvialis DMKU-CP293 were tryptamine (TAM), indole-3-acetic acid (IAA), and tryptophol (TOL), whereas indole-3-pyruvic acid (IPA) was not found. However, supplementation of IPA to the culture medium resulted in IAA peak detection by high-performance liquid chromatography analysis of the culture supernatant. Key enzymes of three IAA biosynthetic routes, i.e., IPA, IAM and TAM were investigated to clarify the IAA biosynthetic pathways of R. fluvialis DMKU-CP293. Results indicated that the activities of tryptophan aminotransferase, tryptophan 2-monooxygenase, and tryptophan decarboxylase were observed in cell crude extract. Overall results suggested that IAA biosynthetic in this yeast strain mainly occurred via the IPA route. Nevertheless, IAM and TAM pathway might be involved in R. fluvialis DMKU-CP293.